बौधायन

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज

बौधायन भारत के प्राचीन गणितज्ञ और शुल्ब सूत्र तथा श्रौतसूत्र के रचयिता थे।

ज्यामिति के विषय में प्रमाणिक मानते हुए सारे विश्व में यूक्लिड की ही ज्यामिति पढ़ाई जाती है। मगर यह स्मरण रखना चाहिए कि महान यूनानी ज्यामितिशास्त्री यूक्लिड से पूर्व ही भारत में कई रेखागणितज्ञ ज्यामिति के महत्वपूर्ण नियमों की खोज कर चुके थे, उन रेखागणितज्ञों में बौधायन का नाम सर्वोपरि है। उस समय भारत में रेखागणित या ज्यामिति को शुल्व शास्त्र कहा जाता था।

बौधायन के सूत्र ग्रन्थ[संपादित करें]

बौधायन के सूत्र वैदिक संस्कृत में हैं तथा धर्म, दैनिक कर्मकाण्ड, गणित आदि से सम्बन्धित हैं। वे कृष्ण यजुर्वेद के तैत्तिरीय शाखा से सम्बन्धित हैं। सूत्र ग्रन्थों में सम्भवतः ये प्राचीनतम ग्रन्थ हैं। इनकी रचना सम्भवतः ८वीं-७वीं शताब्दी ईसापूर्व हुई थी।

बौधायन सूत्र के अन्तर्गत निम्नलिखित ६ ग्रन्थ आते हैं-

सबसे बड़ी बात यह है कि बौधायन के शुल्बसूत्रों में आरम्भिक गणित और ज्यामिति के बहुत से परिणाम और प्रमेय हैं, जिनमें २ का वर्गमूल का सन्निकट मान, तथा पाइथागोरस प्रमेय का एक कथन शामिल है।

बौधायन प्रमेय या पाइथागोरस प्रमेय[संपादित करें]

समकोण त्रिभुज से सम्बन्धित पाइथागोरस प्रमेय सबसे पहले महर्षि बोधायन की देन है। पायथागोरस का जन्म तो ईसा के जन्म के 8 वी शताब्दी पहले हुआ था जबकि हमारे यहाँ इसे ईसा के जन्म के 15 वी शताब्दी पहले से ही ये पढ़ायी जाती थी। बौधायन का यह निम्न लिखित सूत्र है :

दीर्घचतुरश्रस्याक्ष्णया रज्जुः पार्श्वमानी तिर्यग् मानी च यत् पृथग् भूते कुरूतस्तदुभयं करोति ॥
विकर्ण पर कोई रस्सी तानी जाय तो उस पर बने वर्ग का क्षेत्रफल ऊर्ध्व भुजा पर बने वर्ग तथा क्षैतिज भुजा पर बने वर्ग के योग के बराबर होता है।
यह कथन 'पाइथागोरस प्रमेय' का सबसे प्राचीन लिखित कथन है।

2 का वर्गमूल[संपादित करें]

बौधायन श्लोक संख्या i.61-2 (जो आपस्तम्ब i.6 में विस्तारित किया गया है) किसी वर्ग की भुजाओं की लम्बाई दिए होने पर विकर्ण की लम्बाई निकालने की विधि बताता है। दूसरे शब्दों में यह 2 का वर्गमूल निकालने की विधि बताता है।

समस्य द्विकर्णि प्रमाणं तृतीयेन वर्धयेत।
तच् चतुर्थेनात्मचतुस्त्रिंशोनेन सविशेषः ।।
किसी वर्ग का विकर्ण का मान प्राप्त करने के लिए भुजा में एक-तिहाई जोड़कर, फिर इसका एक-चौथाई जोड़कर, फिर इसका चौतीसवाँ भाग घटाकर जो मिलता है वही लगभग विकर्ण का मान है।

अर्थात्

यह मान दशमलव के पाँच स्थानों तक शुद्ध है।

वर्ग के क्षेत्रफल के बराबर क्षेत्रफल के वृत्त का निर्माण[संपादित करें]

चतुरस्रं मण्डलं चिकीर्षन्न् अक्षयार्धं मध्यात्प्राचीमभ्यापातयेत् ।
यदतिशिष्यते तस्य सह तृतीयेन मण्डलं परिलिखेत् ।। (I-58)[1]
Draw half its diagonal about the centre towards the East-West line; then describe a circle together with a third part of that which lies outside the square.
अर्थात् यदि वर्ग की भुजा 2a हो तो वृत्त की त्रिज्या r = [a+1/3(√2a – a)] = [1+1/3(√2 – 1)] a

वृत्त के क्षेत्रफल के बराबर क्षेत्रफल के वर्ग का निर्माण[संपादित करें]

मण्डलं चतुरस्रं चिकीर्षन्विष्कम्भमष्टौ भागान्कृत्वा भागमेकोनत्रिंशधा
विभाज्याष्टाविंशतिभागानुद्धरेत् भागस्य च षष्ठमष्टमभागोनम् ॥ (I-59))[1]
If you wish to turn a circle into a square, divide the diameter into eight parts and one of these parts into twenty-nine parts: of these twenty-nine parts remove twenty-eight and moreover the sixth part (of the one part left) less the eighth part (of the sixth part).

बौधायन के अन्य प्रमेय[संपादित करें]

बौधायन द्वारा प्रतिपादित कुछ प्रमुख प्रमेय ये हैं-

  • किसी आयत के विकर्ण एक दूसरे को समद्विभाजित करते हैं।
  • समचतुर्भुज (रोम्बस) के विकर्ण एक-दूसरे को समकोण पर समद्विभाजित करते हैं
  • किसी वर्ग की भुजाओं के मध्य बिन्दुओं को मिलाने से बने वर्ग का क्षेत्रफल मूल वर्ग के क्षेत्रफल का आधा होता है।
  • किसी आयत की भुजाओं के मध्य बिन्दुओं को मिलाने से समचतुर्भुज बनता है जिसका क्षेत्रफल मूल आयत के क्षेत्रफल का आधा होता है।

उपरोक्त विवरण से स्पष्ट होता है कि बौधायन ने आयत, वर्ग, समकोण त्रिभुज समचतुर्भुज के गुणों तथा क्षेत्रफलों का विधिवत अध्ययन किया था। यज शायद उस समय यज्ञ के लिए बनायी जाने वाली 'यज्ञ भूमिका' के महत्व के कारण था।

नाम में द्विरूपता[संपादित करें]

"बौधायन" तथा "बौधायनीय" शब्दों के लिए "बोधायन" या "बोधायनीय" का प्रयोग दक्षिण भारत में बहुधा किया जाता है। परन्तु संभवतः यह गलत है क्योंकि -अयन शब्द के प्रयोग में पहले वर्ण का स्वर दीर्घ हो जाता है। [2] जैसे- "द्वैपायन", जो "द्वीप" व "अयन" पर विभिन्न व्याकरणीय नियम लगाकर बना है।

सन्दर्भ[संपादित करें]

  1. Baudhayana’s Circles
  2. The sacred laws of the Aryas as taught in the schools of Apastamba, Gautama, Vasishtha and Baudhayana, Translated by George Buhler, Part-II Vasishtha and Baudhayana, Publisher- Oxford, The Clarendon press, 1882

इन्हें भी देखें[संपादित करें]

बाहरी कड़ियाँ[संपादित करें]