ब्रह्मगुप्त सर्वसमिका

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज

ब्रह्मगुप्त सर्वसमिका भारतीय गणितज्ञ ब्रह्मगुप्त द्वारा है। यह सर्वसमिका दो योगों का गुणनफल, जिनमें प्रत्येक गुणक स्वयं दो वर्गों का योग हो, को दो वर्गों के योग के रूप में अभिव्यक्त करती है।

उदाहरण के लिये,

यह सर्वसमिका लाग्रेंज सर्वसमिका (Lagrange's identity) की विशेष स्थिति (special case) है।

ब्रह्मगुप्त सर्वसमिका का विस्तार[संपादित करें]

ब्रह्मगुप्त सर्वसमिका का विस्तार करके २, ४, ८, १६ आदि वर्गों के लिये सर्वसमिकाएँ निकाली जा सकतीं हैं।

  • ब्रह्मगुप्त-फिबोनाकी सर्वसमिका:[1] (x₁²+x₂²) · (y₁²+y₂²) = z₁²+z₂²
  • आयलर (Eulers) चतुःवर्ग सर्वसमिका:[2] (x₁²+x₂²+x₃²+x₄²) · (y₁²+y₂²+y₃²+y₄²) = z₁²+z₂²+z₃²+z₄²
  • डेगेन (Degens) अष्ट वर्ग सर्वसमिका:[3] (x₁²+x₂²+x₃²+…+x₈²) · (y₁²+y₂²+y₃²+…+y₈²) = z₁²+z₂²+z₃²+…+z₈²
  • फिस्तर (Pfisters) षोडष वर्ग सर्वसमिका:[4] (x₁²+x₂²+x₃²+…+x₁₆²) · (y₁²+y₂²+y₃²+…+y₁₆²) = (z₁²+z₂²+z₃²+…+z₁₆²)

फिस्तर ने 1967 में सिद्ध किया कि सिद्धान्ततः २ के सभी पूर्णांक घातों (2ⁿ) के लिये सर्वसमिकाएँ प्राप्त की जा सकतीं हैं।

सन्दर्भ[संपादित करें]

इन्हें भी देखें[संपादित करें]

बाहरी कड़ियाँ[संपादित करें]