भारतीय गणित

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज

गणितीय गवेषणा का महत्वपूर्ण भाग भारतीय उपमहाद्वीप में उत्पन्न हुआ है। संख्या, शून्य, स्थानीय मान, अंकगणित, ज्यामिति, बीजगणित, कैलकुलस आदि का प्रारम्भिक कार्य भारत में सम्पन्न हुआ। गणित-विज्ञान न केवल औद्योगिक क्रांति का बल्कि परवर्ती काल में हुईं वैज्ञानिक उन्नति का भी केंद्र बिन्दु रहा है। बिना गणित के विज्ञान की कोई भी शाखा पूर्ण नहीं हो सकती। भारत ने औद्योगिक क्रांति के लिए न केवल आर्थिक पूँजी प्रदान की वरन् विज्ञान की नींव के जीवंत तत्व भी प्रदान किये जिसके बिना मानवता विज्ञान और उच्च तकनीकी के इस आधुनिक दौर में प्रवेश नहीं कर पाती। विदेशी विद्वानों ने भी गणित के क्षेत्र में भारत के योगदान की मुक्तकंठ से सराहना की है।

'गणित' शब्द का इतिहास[संपादित करें]

विश्व के प्राचीनतम ग्रन्थ वेद संहिताओं से गणित तथा ज्योतिष को अलग-अलग शास्त्रों के रूप में मान्यता प्राप्त हो चुकी थी। यजुर्वेद में खगोलशास्त्र (ज्योतिष) के विद्वान् के लिये ‘नक्षत्रदर्श’ का प्रयोग किया है तथा यह सलाह दी है कि उत्तम प्रतिभा प्राप्त करने के लिये उसके पास जाना चाहिये (प्रज्ञानाय नक्षत्रदर्शम्)। वेद में शास्त्र के रूप में ‘गणित’ शब्द का नामतः उल्लेख तो नहीं किया है पर यह कहा है कि जल के विविध रूपों का लेखा-जोखा रखने के लिये ‘गणक’ की सहायता ली जानी चाहिये।

शास्त्र के रूप में ‘गणित’ का प्राचीनतम प्रयोग लगध ऋषि द्वारा प्रोक्त वेदांग ज्योतिष नामक ग्रन्थ का एक श्लोक में माना जाता है। पर इससे भी पूर्व छान्दोग्य उपनिषद् में सनत्कुमार के पूछने पर नारद ने जो 18 अधीत विद्याओं की सूची प्रस्तुत की है, उसमें ज्योतिष के लिये ‘नक्षत्र विद्या’ तथा गणित के लिये ‘राशि विद्या’ नाम प्रदान किया है। इससे भी प्रकट है कि उस समय इन शास्त्रों की तथा इनके विद्वानों की अलग-अलग प्रसिद्धि हो चली थी।

आगे चलकर इस शास्त्र के लिये अनेक नाम विकसित होते रहे। सर्वप्रथम ब्रह्मगुप्त ने पाट या पाटी का प्रयोग किया। बाद में श्रीधराचार्य ने ‘पाटी गणित’ नाम से महनीय ग्रन्थ लिखा। तब से यह नाम लोकप्रिय हो गया। पाटी या तख्ती पर खड़िया द्वारा संक्रियाएँ करने से यह नाम समाज में चलने लगा। अरब में भी गणित की इस पद्धति को अपनाने से इस नाम के वजन पर ‘इल्म हिसाब अल तख्त’ नाम प्रचलित हुआ।

परिभाषा[संपादित करें]

भारतीय परम्परा में गणेश दैवज्ञ ने अपने ग्रन्थ बुद्धिविलासिनी में गणित की परिभाषा निम्नवत की है-

गण्यते संख्यायते तद्गणितम्। तत्प्रतिपादकत्वेन तत्संज्ञं शास्त्रं उच्यते।
(जो परिकलन करता और गिनता है, वह गणित है तथा वह विज्ञान जो इसका आधार है वह भी गणित कहलाता है।)

गणित दो प्रकार का है-

  • व्यक्तगणित या पाटीगणित - इसमें व्यक्त राशियों का उपयोग किया जाता है।
  • अव्यक्तगणित या बीजगणित - इसमें अव्यक्त या आज्ञात राशियों का उपयोग किया जाता है। अव्यक्त संख्याओं को 'वर्ण' भी कहते हैं। इन्हें 'या', 'का', 'नी' आदि से निरूपित किया जाता है। (जैसे आजकल रोमन अक्षरों x, y, z का प्रयोग किया जाता है। (का = कालक, नी = नीलक, या = यावत्, ता = तावत्)

भारतीय ग्रन्थों में गणित की महत्ता का प्रकाशन[संपादित करें]

वेदांग ज्योतिष में गणित का स्थान सर्वोपरि (मूधन्य) बताया गया है -

यथा शिखा मयूराणां नागानां मणयो यथा।
तद्वद् वेदांगशास्त्राणां गणितं मूर्ध्नि संस्थितम्।। (वेदांग ज्योतिष - ५)

(जिस प्रकार मोरों के सिर पर शिखा और नागों के सिर में मणि सर्वोच्च स्थान में होते हैं उसी प्रकार वेदांगशास्त्रों में गणित का स्थान सबसे उपर (मूर्धन्य) है।

इसी प्रकार,

बहुभिर्प्रलापैः किम्, त्रयलोके सचरारे।
यद् किंचिद् वस्तु तत्सर्वम्, गणितेन् बिना न हि ॥महावीराचार्य, गणितसारसंग्रह में

(बहुत प्रलाप करने से क्या लाभ है ? इस चराचर जगत में जो कोई भी वस्तु है वह गणित के बिना नहीं है / उसको गणित के बिना नहीं समझा जा सकता)

अन्य शास्त्रों में गणित की विवेचना[संपादित करें]

भारत में अन्य शास्त्रों के विद्वान भी गणित की भावना से ओत-प्रोत रहे प्रतीत होते हैं। उन शास्त्रों में प्रसंगवश गणित विषयक जानकारियाँ बिखरी पड़ी हैं। महान वैयाकरण पाणिनि ने गणित के अनेक शब्दों की सूक्ष्म विवेचना की है। उन्होंने उस समय की आवश्यकतानुसार प्रतिशत के स्थान पर मास में देय ब्याज के लिये एक ‘प्रतिदश’ अनुपात का उल्लेख किया है (कुसीददशैकादशात् ष्ठन्ष्ठचौ (पा.सा. 4.4.31))। चक्रवृद्धि ब्याज द्वारा सर्वाधिक बढ़ी हुई रकम को ‘महाप्रवृद्ध’ बताया है। तोल, माप, सिक्के, पण्य द्रव्य के सैकड़ो शब्दों के वर्णन के अन्तर्गत त्रैराशिक नियम की सूचना दी है।

दर्शनशास्त्र में वेदान्त में अध्यारोप अपवाद के सिद्धान्त बीजगणितीय समीकरण या अंकगणित के ‘इष्टकर्म’ के समकक्ष हैं। न्याय शास्त्र की अनुमान या तर्कविद्या सर्वथा गणितीय नियमों से संचालित है।

ई. पू. दूसरी शती में पिंगल विरचित छन्दशास्त्र में छन्दों के विभेद को वर्णित करने वाला ‘मेरुप्रस्तार’ पास्कल के त्रिभुज से तुलनीय बनता है। वेदों के क्रमपाठ, घनपाठ आदि में गणित के श्रेणी-व्यवहार के तत्त्व वर्तमान हैं।

यदि यह जानना हो कि समाज में 56 प्रकार के व्यंजन का प्रयोग किस प्रकार प्रचलित है, तो इसके लिये वैद्यकशास्त्र में वर्णित गणित के ‘अंक-पाश’ के अन्तर्गत ‘संचय’ (Combination) के नियमों के आधार पर कुल 6 रसों के द्वारा 63 तथा अन्ततः 56 विभेदों की संकल्पना का अध्ययन अपेक्षित होगा।

साहित्य-शास्त्र में भी गणित के आधार पर मनोरम रचनाएँ प्राप्त होती हैं। वहां पाणिनीय व्याकरण के एक प्रमुख उदाहरण ‘लाकृति’ के आधार पर सुख-दुख में एक समान रहने वाले सज्जन तथा 9 संख्या की मनोहारी समानता बताई गई है। महाकवि श्रीहर्ष ने बताया है कि दमयन्ती के कान आखिर क्यों तथा किस प्रकार सर्वथा नए रचे गए। उन्होंने माना कि उपनिषदों में वर्णित 18 विद्याओं में से 9-9 विद्याओं का अनुप्रवेश दमयन्ती के कानों के अन्दर तक हुआ था। ये नव अंक ही कानों में पहुँच कर शब्दसाम्य से ‘नव’ बन गए—

अस्या यदष्टादश संविभज्य विद्याः श्रुतीः दध्रतुरर्धमर्धम्।
कर्णान्तरुत्कीर्णगभीररेखः किं तस्य संख्यैव नवा नवांकः।। (नैषध, 7.63)

खगोल-विज्ञान के साथ तो गणित का अन्योन्य सम्बन्ध माना गया है। भास्कराचार्य का कहना है कि खगोल तथा गणित में एक दूसरे से अनभिज्ञ पुरुष उसी प्रकार महत्त्वहीन है, जैसे घृत के बिना व्यंजन, राजा के बिना राज्य तथा अच्छे वक्ता के बिना सभा होती है—

भोज्यं यता सर्वरसं विनाज्यं राज्यं यथा राजविवर्जितं च।
सभा न भातीव सुवक्तृहीना गोलानभिज्ञो गणकस्तथात्र।। (सिद्धान्तशिरोमणि, गोलाध्याय, श्लोक 4)

गणित के विभिन्न क्षेत्रों में भारत का योगदान[संपादित करें]

प्राचीनकाल तथा मध्यकाल के भारतीय गणितज्ञों द्वारा गणित के क्षेत्र में किये गये कुछ प्रमुख योगदान नीचे दिये गये हैं-

  • (४) गणितीय तर्कशास्त्र (लॉजिक): Formal grammars, formal language theory, the Panini-Backus form (पाणिनि देखें), Recursion (पाणिनि देखें)

भारतीय गणित का इतिहास[संपादित करें]

सभी प्राचीन सभ्यताओं में गणित विद्या की पहली अभिव्यक्ति गणना प्रणाली के रूप में प्रगट होती है। अति प्रारंभिक समाजों में संख्यायें रेखाओं के समूह द्वारा प्रदर्शित की जातीं थीं। यद्यपि बाद में, विभिन्न संख्याओं को विशिष्ट संख्यात्मक नामों और चिह्नों द्वारा प्रदर्शित किया जाने लगा, उदाहरण स्वरूप भारत में ऐसा किया गया। रोम जैसे स्थानों में उन्हें वर्णमाला के अक्षरों द्वारा प्रदर्शित किया गया। यद्यपि आज हम अपनी दशमलव प्रणाली के अभ्यस्त हो चुके हैं, किंतु सभी प्राचीन सभ्यताओं में संख्याएं दशमाधार प्रणाली पर आधारित नहीं थीं। प्राचीन बेबीलोन में 60 पर आधारित संख्या-प्रणाली का प्रचलन था।

भारत में गणित के इतिहास को मुख्यता ५ कालखंडों में बांटा गया है-

  • १. आदि काल (500 इस्वी पूर्व तक)
  • (क) वैदिक काल (१००० इस्वी पूर्व तक)- शुन्य और दशमलव की खोज
  • (ख) उत्तर वैदिक काल (१००० से ५०० इस्वी पूर्व तक) इस युग में गणित का भारत में अधिक विकास हुआ। इसी युग में बोधायन शुल्व सूत्र की खोज हुई जिसे हम आज पाइथागोरस प्रमेय के नाम से जानते है।
  • २. पूर्व मध्य काल – sine, cosine की खोज हुई।
  • ४. उत्तर-मध्य काल (१२०० इस्वी से १८०० इस्वी तक) - नीलकंठ ने १५०० में sin r का मान निकालने का सूत्र दिया जिसे हम ग्रेगरी श्रेणी के नाम से जानते है।
  • ५. वर्तमान काल - रामानुजम आदि महान गणितज्ञ हुए।

भारतीय गणित : विद्वानों के उद्गार[संपादित करें]

भारत और वैज्ञानिक क्रांति में डेविड ग्रे लिखते हैं :

"पश्चिम में गणित का अध्ययन लम्बे समय से कुछ हद तक राष्ट्र् केंद्रित पूर्वाग्रह से प्रभावित रहा है, एक ऐसा पूर्वाग्रह जो प्रायः बड़बोले जातिवाद के रूप में नहीं बल्कि गैरपश्चिमी सभ्यताओं के वास्तविक योगदान को नकारने या मिटाने के प्रयास के रूप में परिलक्षित होता है। पश्चिम अन्य सभ्यताओं विशेषकर भारत का ऋणी रहा है। और यह ऋण ’’पश्चिमी’’ वैज्ञानिक परंपरा के प्राचीनतम काल - ग्रीक सम्यता के युग से प्रारंभ होकर आधुनिक काल के प्रारंभ, पुनरुत्थान काल तक जारी रहा है - जब यूरोप अपने अंध युग से जाग रहा था।"

इसके बाद डॉ॰ ग्रे भारत में घटित गणित के सर्वाधिक महत्वपूर्ण विकसित उपलब्धियों की सूची बनाते हुए भारतीय गणित के चमकते सितारों जैसे आर्यभट, ब्रह्मगुप्त, महावीर, भास्कर और माधव के योगदानों का संक्षेप में वर्णन करते हैं। अंत में वे जोर देकर कहते हैं -

"यूरोप में वैज्ञानिक क्रांति के विकास में भारत का योगदान केवल हासिये पर लिखी जाने वाली टिप्पणी नहीं है जिसे आसानी से और अतार्किक तौर पर यूरोप केंद्रित पूर्वाग्रह के आडम्बर में छिपा दिया गया है। ऐसा करना इतिहास को विकृत करना है और वैश्विक सभ्यता में भारत के महानतम योगदान को नकारना है।"

भारतीय गणित : यूरोकेन्द्रीयता का शिकार[संपादित करें]

अब यह स्पष्ट रूप से माना जाने लगा है कि गणित में भारत के योगदान को सुनियोजित तरीके से कमतर बताया गया है या उसकी उपेक्षा की गयी है। भारतीय मनीषियों द्वारा गणित में बहुत से योगदान (अनुसंधान और विकास) तत्कालीन यूरोपियों को पता थे जिनको उन्होने थोड़ा बहुत हेर-फेर करके अपने मूल अनुसंधान के रूप में प्रस्तुत कर दिया।

भारतीय गणित की शब्दावली[संपादित करें]

  • पाटीगणित
  • बीजगणित
  • अव्यक्त गणित
  • करण - गणना करने की विधि या विधि बताने वाला ग्रन्थ
  • त्रैराशिकव्यवहार (द रूल आफ थ्री)
  • यावत-तावत् - भारतीय बीजगणित में अज्ञात-राशि के लिए 'यावत्-तावत्' (जितने कि उतनी मात्रा में) का प्रयोग हुआ है।
  • वर्ण (variable) - ब्रह्मगुप्त ने अज्ञात राशि के लिए 'वर्ण' (रंग, अक्षर) शब्द का प्रयोग किया। इसलिए कालान्तर में अज्ञात राशि के लिए कालक (का), नीलक (नी), पीलक (पी) आदि का प्रयोग होता रहा।
  • करणी (surd)
  • परिकर्म (mathematical operation)
  • मिश्रक-व्यवहार - इसमें ब्याज, स्वर्ण की मिलावत आदि से सम्बन्धित प्रश्न आते हैं।
  • क्षेत्रगणितव्यवहारः (Measurement of Areas)
  • खातव्यवहारः (calculations regarding excavations)
  • छायाव्यवहारः (Calculations relating to shadows)
  • अर्धच्छेद - किसी संख्या N का अर्धच्छेद वह संख्या है जिसको २ के उपर घात लगाने से N मिलता है। अतः ३२ का अर्धच्छेद ५ है।
  • अर्धज्या या ज्यार्ध (half cord)

भारतीय गणितज्ञ[संपादित करें]

इन्हें भी देखें[संपादित करें]

टिप्पणियाँ[संपादित करें]

गणित और संगीत : पिंगल ने 300 ई में छन्दशास्त्र नामक ग्रंथ की रचना की थी। उनने सांयोजिकी (काम्बीनेटरीज) और संगीत सिद्धांत के परस्पर संबंध की परीक्षा की जो मर्सिन, 1588-1648, द्वारा संगीत सिद्धांत पर रचित एक महत्वपूर्ण ग्रंथ का अग्रदूत है।

गणित और वास्तुशिल्प : अंकगणितीय और ज्यामितीय श्रेणियों में रुचि उत्पन्न होने का कारण भारतीय वास्तु के डिजाइन जैसे मंदिर शिखर, गोपुरम और मंदिरों की भीतरी छत की टेक हैं। वास्तव में ज्यामिति और वास्तु साजसज्जा का परस्पर संबंध उच्चतम स्तर पर विकसित हुआ था मुस्लिम शासकों द्वारा पोषित विभिन्न स्मारकों के निर्माण में जो मध्य एशिया, फारस, तुर्की, अरब और भारत के वास्तुशिल्पियों द्वारा निर्मित किये गए थे।

भारतीय अंक प्रणाली का प्रसार : भारतीय अंक प्रणाली के पश्चिम में प्रसार के प्रमाण ’’क्रेस्ट आफ पीकॉक’’ के लेखक जोसेफ द्वारा इस प्रकार दिये गए हैं :

सेबेरस सिबोख्त, 662 ई. ने एक सीरियाई पुस्तक में भारतीय ज्योतिर्विदों के ’’गूढ़ अनुसंधानों’’ का वर्णन करते हुए उन्हें ’’यूनानी और बेबीलानियन ज्योतिर्विदों की अपेक्षा अधिक प्रवीण’’ और ’’संगणना के उनके बहुमूल्य तरीकों को वर्णनातीत’’ बताया है और उसके बाद उसने उनकी नौ अंकों की प्रणाली के प्रयोग की चर्चा की है।

बाहरी कड़ियाँ[संपादित करें]

संदर्भ[संपादित करें]

  • भारत में विज्ञान के इतिहास का अध्ययन - देवी प्रसाद चट्टोपाध्याय द्वारा संपादित चयनिका
  • गणित के इतिहास का अध्ययन -ए. पी. जुस्केविक, एस. एस. डेमिदोव, एफ. ए. मेडविदोव और इ. आइ. स्लाव्युतिन, ’’नावका’’ मास्को 1974
  • सुल्ब का विज्ञान - बी. दत्त, कलकत्ता, 1932
  • गणित के इतिहास का अध्ययन -ए. पी. जुस्केविक, एस. एस. डेमिदोव, एफ. ए. मेडविदोव और इ. आइ. स्लाव्युतिन, ’’नावका’’ मास्को 1974।
  • सुल्ब का विज्ञान - बी. दत्त, कलकत्ता, 1932।
  • दी के्रस्ट आफ द पीकाक - जी. जी. जोसेफ, प्रिंस्टन यूनिवर्सिटी प्रेस, 2000। पाइ का ज्ञान सुल्ब सूत्रकारों को ज्ञात था - आर. पी. कुलकर्णी, इंडियन जर्नल हिस्ट्री सांइस, 13 1 1978, 32-41।
  • आर्यभट से पूर्ववर्ती बीजगणित के कुछ महत्वपूर्ण परिणाम - जी. कुमारी, मैथ. एड., सिवान, 14 1 1980, बी 5 से बी 13।
  • अंकों का एक सार्वभौमिक इतिहासः पूर्व ऐतिहासिक काल से कम्प्यूटर के अविष्कार तक - जी. इफरा, लंदन, 1998।
  • पाणिनि.बैकस फार्म - पी. जेड़. इंगरमैन, कम्युनिकेशन्स आफ दी एसीएम, 10 3 1967, 137।
  • ज्योतिष और गणित में जैनों का योगदान - मैथ. एड., सिवान, 18 3 1984, 98-107।
  • जैन गणित में पहली अगणनीय संख्या - आर. सी. गुप्त, गणित भारती 14 1-4 1992, 11-24।
  • गणित के जैन स्कूल में सिस्टम थ्योरी - एल. सी. जैन, इंडियन जर्नल हिस्ट्री सोसायटी 14 1 1979, 31-65।
  • गणित के जैन स्कूल में सिस्टम थ्योरी - एल. सी. जैन और कु. मीना जैन, इंडियन जर्नल हिस्ट्री सोसायटी, 24 3 1989, 163-180।
  • भास्कर प्रथम, भास्कर प्रथम और उनकी कृतियां भाग 2 - के. शंकर शुक्ल, महाभास्करीय, संस्कृत, लखनउ, 1960।
  • भास्कर प्रथम, भास्कर प्रथम और उनकी कृतियां भाग 3 - के. शंकर शुक्ल, महाभास्करीय, संस्कृत, लखनउ, 1963।
  • सातवीं सदी में हिंदू गणित, आर्यभटीय पर भास्कर प्रथम की समीक्षा से - के. शंकर शुक्ल, गणित 22 1 1971, 115-130।
  • बाराहमिहिर द्वारा द ब्त की गणना और पास्कल के त्रिभुज की खोज - आर. सी. गुप्त, गणित भारती 14 1-4 1992, 45.49।
  • परिमेय त्रिभुजों और चतुर्भुजों पर महावीर के हल पर - बी. दत्त, बुलेटिन कलकत्ता, मैथ्स सोसायटी, 20 1932, 267-294।
  • महावीर के गणित सार संग्रह पर, लगभग 850 ई. - बी. एस. जैन, इंडियन जर्नल हिस्ट्री सोसायटी, 12 1 1977, 17-32।
  • श्रीधराचार्य का पाटीगणित - के. शंकर शुक्ल, लखनउ, 1959। मैथेमैटिकर - एच. सुटेर। दी मैथेमैटिकर एण्ड एस्ट्र्ोनोमेन दर अरेबर - सुटेर।
  • दी फिलोसोफिश्चेन अमन्दलुंजन दे एल खिंदी, मुंस्टर, 1897।
  • हिंदू ज्योतिर्विद्या के केरलीय स्कूल का इतिहास - के. वी. शर्मा, होशियारपुर, 1972।
  • माधव ग्रेगरी श्रेढ़ी, गणित शिक्षा - आर. सी. गुप्त, 7 1973, बी 63-बी 70। माधवः एनालेसिस का प्रणेता - एस. परमेश्वरन, गणित भारती, 18 1-4 1996, 67-70।
  • ज्येष्ठदेव का युक्तिभासः भारतीय गणित और ज्योतिर्विज्ञान में परिमेय पर एक ग्रंथ, एक विश्लेषणात्मक मूल्यांकन - के. बी. शर्मा और एस. हरिहरन, इंडियन जर्नल हिस्ट्री सोसायटी, 26 2 1991, 185-207।
  • मध्यकालीन केरलीय गणित का एक अछूता स्त्रोत् - सी. टी. राजगोपाल और एम. एस. रंगाचारी, आर्क. हिस्ट्री एक्जेक्ट साइंस 18 1978, 89-102।
  • मध्यकालीन केरलीय गणित - सी. टी. राजगोपाल और एम. एस. रंगाचारी, आर्क. हिस्ट्री एक्जेक्ट साइंस, 35 1986, 91-99।
  • प्राचीन और मध्य कालीन भारत में गणित - ए. के. बाग, वाराणसी, 1979।
  • भारत में विज्ञान का संक्षिप्त इतिहास - बोस, सेन, सुबारायप्पा, इंडियन नेशनल साइंस एकादमी।
  • प्राचीन और मध्य कालीन भारत में ज्यामिति - टी. ए. सरस्वती, 1979, दिल्ली।
  • प्राचीन भारत में तर्क शास्त्र की बुनियाद, भाषा शास्त्र और गणित - एन. सिंह, भारतीय संस्कृति में विज्ञान और तकनीकी, संपादकः ए. रहमान, 1984, नई दिल्ली।
  • प्राचीन और मध्य कालीन भारत में तथा कथित फिबोनाक्सी संख्याएं - पी. सिंह, हिस्टोरिका मैथमैटिका, 12, 229-44, 1985।
  • भारत और चीनः विज्ञान विनिमय, भारत में विज्ञान का इतिहास भाग 2 - चिन केहम्यू।