अपसारी श्रेणी

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज

गणित में अपसारी श्रेणी एक अनन्त श्रेणी है जो अभिसारी नहीं है, मतलब यह कि श्रेणी के आंशिक योग का अनन्त अनुक्रम का सीमान्त मान नहीं होता।

यदि एक श्रेणी अभिसरण करती है तो इसका व्याष्‍टिकारी पद (nवाँ पद जहाँ n अनन्त की ओर अग्रसर है।) शून्य की ओर अग्रसर होना चहिए। अतः कोई भी श्रेणी जिसका व्याष्‍टिकारी पद शून्य की ओर अग्रसर नहीं होता तो वह अपसारी होती है। तथापि अभिसरण की शर्त थोडी प्रबल है: जिस श्रेणियों का व्याष्‍टिकारी पद शून्य की ओर अग्रसर हो वह आवश्यक रूप से अभिसारी नहीं होती। इसका एक गणनीय उदाहरण निम्न हरात्मक श्रेणी है:

हरात्मक श्रेणी का अपसरण मध्यकालीन गणितज्ञ निकोल ऑरेसम द्वारा सिद्ध किया जा चुका है

अबेलियन अर्थ[संपादित करें]

एबल संकलन[संपादित करें]

यदि λn = n, तब हमें एबल संकलन विधि से प्राप्त होती है। यहाँ

जहाँ z = exp(−x) है। अतः जैसे ही x यदि धनात्मक दिशा की ओर से शून्य की ओर अग्रसर है तो सीमा का मान f(x) धनात्मक वास्तविक संख्याओं की तरफ से z एक (1) की ओर अग्रसर है तो f(z) की घातीय श्रेणी के लिए सीमा होगी और एबल संकलन A(s) निम्न प्रकार परिभाषित है:

एबल संकलन रोचक है क्योंकि इसका संगत हल सिसैरा-संकलन से अधिक प्रबल है: A(s) = Ck(s) जब भी उत्तरवर्ती परिभाषित हो।

लिन्डलाफ संकलन[संपादित करें]

यदि 1 = λn = n ln(n), तब (एक से अनुक्रमण)

तब L(s), लिन्डलाफ संकलन (वोलकॉव 2001), जैसे x शून्य की ओर अग्रसर हो तो ƒ(x) होगा। लिन्डलाफ संकलन एक लाभदायक विधि है जब अन्य अनुप्रयोगों के मध्य एक घातीय श्रेणी पर लागू किया जाता है।

यदि g(z) चकती के शून्य के चारों ओर विश्‍लेषणात्मक है और अतः धनात्मक त्रिज्या के अभिसरण सहित मैक्लारिन श्रेणी G(z) है, तब मित्ताग-लेफ्फ्लेर सितारा (*) में L(G(z)) = g(z)। इसके अतिरिक्त g(z) का अभिसरण इस सितारे के संहत उपसमुच्चय एकरूप है।

ये भी देखें[संपादित करें]

सन्दर्भ[संपादित करें]