१ + २ + ३ + ४ + · · ·

मुक्त ज्ञानकोश विकिपीडिया से
Jump to navigation Jump to search

सभी प्राकृत संख्याओं का योग 1 + 2 + 3 + 4 + · · · एक अपसारी श्रेणी है। श्रेणी का nवाँ आंशिक योग त्रिकोण संख्या है

जो जैसे ही n का मान अनन्त की ओर अग्रसर होता है वैसे बिना किसी सीमा के बढता है।

यद्यपि पूर्ण श्रेणी को प्रथम दृष्टया देखने पर यह इस प्रकार लगता है जैसे यह अर्थहीन है, इसको गणितीय रूप से रोचक परिणाम वाली संख्या के रूप में प्रकलकलित किया जा सकता है, जिसके अनुप्रयोग अन्य क्षेत्रों जैसे सम्मिश्र विश्लेषण, क्वांटम क्षेत्र सिद्धांत और स्ट्रिंग सिद्धांत में होता है।

संकलनीयता[संपादित करें]

इसके परिवर्ति समकक्ष 1 - 2 + 3 - 4 + · · · के विपरीत यह श्रेणी 1 + 2 + 3 + 4 + · · · हाबिल संकलनीय नहीं है। इसका जनक फलन

x = 1 पर एक ध्रुव रखता है।

भौतिक विज्ञान[संपादित करें]

ये भी देखें[संपादित करें]

टिप्पणी[संपादित करें]

सन्दर्भ[संपादित करें]

  • Berndt, Bruce C., Srinivasa Ramanujan Aiyangar, and Robert A. Rankin (1995). Ramanujan: letters and commentary. American Mathematical Society. आई॰ऍस॰बी॰ऍन॰ 0-8218-0287-9.
  • Hardy, G.H. (1949). Divergent Series. Clarendon Press. साँचा:LCC.

बाहरी कड़ियाँ[संपादित करें]