सामग्री पर जाएँ

समाकल सूची

मुक्त ज्ञानकोश विकिपीडिया से

समाकलन, कलन की दो प्रमुख क्रियाओं में से एक है। अवकलन इस दृष्टि से समाकलन से भिन्न है कि अवकलज निकालने के लिये छोटे-छोटे और सरल नियम व उपाय हैं; जिनकी सहायता से कठिन से कठिन फलनों का भी अवकलज निकाला जा सकता है। समाकलन इस दृष्टि से कठिन है। इसलिये ज्ञात समाकलनों की सूची बहुत उपयोगी होती है।

नीचे कुछ अति सामान्य फलनों के समाकल दिये गये हैं:(x)

फलनों के समाकलन की सामान्य विधियाँ

[संपादित करें]

(ये विधियाँ तभी लागू होंगी यदि दिया हुआ फलन समाकलनीय हो)

-- ( खंडश: समाकलन (इण्टीग्रेशन बाई पार्ट्स) )

सरल फलनों के समाकल

[संपादित करें]

परिमेय फलन

[संपादित करें]

अपरिमेय फलन

[संपादित करें]

लघुगणकीय फलन

[संपादित करें]

चरघातांकी फलन

[संपादित करें]

त्रिकोणमित्तीय फलन

[संपादित करें]
(see integral of secant cubed)

हाइपरबोलिक फलन

[संपादित करें]

इन्वर्स हाइपरबोलिक फलन

[संपादित करें]

प्रतिवर्तन सूत्र (रिकर्सन फॉर्मूले)

[संपादित करें]

Definite integrals lacking closed-form antiderivatives

[संपादित करें]

There are some functions whose antiderivatives cannot be expressed in closed form. However, the values of the definite integrals of some of these functions over some common intervals can be calculated. A few useful integrals are given below.

(see also Gamma function)
(the Gaussian integral)
(see also Bernoulli number)
(if n is an even integer and )
(if is an odd integer and )
(where is the Gamma function)
(where is the exponential function .)
(where is the modified Bessel function of the first kind)
(, this is related to the probability density function of the Student's t-distribution)

The method of exhaustion provides a formula for the general case when no antiderivative exists:

The "sophomore's dream"

[संपादित करें]

(जॉन बर्नौली के नाम से प्रसिद्ध; see sophomore's dream).

विशेष फलन

[संपादित करें]
  • गामा फलन:


  • एरर फलन:



  • एलिप्टिक समाकल :



इन्हें भी देखें

[संपादित करें]

बाहरी कड़ियाँ

[संपादित करें]

समाकलजों की सूची

[संपादित करें]

उपपत्तियाँ

[संपादित करें]

आनलाइन सेवाएँ

[संपादित करें]

मुक्त स्रोत प्रोग्राम

[संपादित करें]