माध्यमान प्रमेय

मुक्त ज्ञानकोश विकिपीडिया से
Jump to navigation Jump to search
कोई भी फलन जो [a, b] पर सतत है और (a, b) में अवकलनीय है, तो अन्तराल (a,b) में कोई बिन्दु c इस प्रकार होगा कि बिन्दु [a,b] को मिलाने वाले छेदक रेखा के cपर स्पर्शरेखा के समानान्तर होगी।

गणित में, माध्य मान प्रमेय के अनुसार किन्हीं दो बिन्दुओं के मध्य दिये गये किसी चाप पर कम से कम एक ऐसा बिन्दु विद्यमान होगा जिसपर चाप की स्पर्शरेखा अन्तकविन्दुओं को मिलाने वाली छेदक रेखा के समानान्तर होगी।

यह प्रमेय किसी फलन के किसी दिये गये अन्तराल में, इसके बिन्दुओं के मध्य अवकलज की स्थानिक परिकल्पना से सम्बंधित वैश्विक कथन को सिद्ध करने के लिए काम में ली जाती थी।

अधिक निश्चितता से, यदि कोई फलन f बंद अंतराल [a, b] पर सतत है, जहाँ a<b है तथा विवृत अंतराल (a, b) पर अवकलनीय है तो (a, b) में कम से कम एक बिन्दु c इस प्रकार विद्यमान होगा कि

[1]

प्रमेय का विशिष्ट रूप पहली बार केरलीय गणित सम्प्रदाय के गणितज्ञ परमेश्वर (1370–1460) ने गोविन्दस्वामी और भास्कराचार्य के साथ समीक्षा में किया था।[2] माध्यमान प्रमेय का आधुनिक रूप बाद में ऑगस्टिन लुइस कौशी (1789–1857) ने किया। यह प्रमेय अवकलन गणित और गणितीय विश्लेषण में महत्त्वपूर्ण परिणाम देता है और कलन का मूलभूत प्रमेय को सिद्ध करने में बहुत उपयोगी है।

सन्दर्भ[संपादित करें]

  1. वाइसटीन, एरिक. "Mean-Value Theorem" [माध्य मान प्रमेय]. मैथवर्ल्ड (अंग्रेज़ी में). वोल्फार्म रिसर्च. मूल से 20 फ़रवरी 2015 को पुरालेखित. अभिगमन तिथि १९ मार्च २०१५.
  2. J. J. O'Connor and E. F. Robertson (2000). Paramesvara Archived 2 अप्रैल 2015 at the वेबैक मशीन., MacTutor History of Mathematics archive.

F(x)=✓x-4