खेल सिद्धांत
खेल सिद्धांत या गेम थ्योरी (game theory) व्यवहारिक गणित की एक शाखा है जिसका प्रयोग समाज विज्ञान, अर्थशास्त्र, जीव विज्ञान, इंजीनियरिंग, राजनीति विज्ञान, अंतर्राष्ट्रीय संबंध, कम्प्यूटर साइंस और दर्शन में किया जाता है। खेल सिद्धांत कूटनीतिक परिस्थितियों में (जिसमें किसी के द्वारा विकल्प चुनने की सफलता दूसरों के चयन पर निर्भर करती है) व्यवहार को बूझने का प्रयास करता है। यूँ तो शुरू में इसे उन प्रतियोगिताओं को समझने के लिए विकसित किया गया था जिनमें एक व्यक्ति का दूसरे की गलतियों से फायदा होता है (ज़ीरो सम गेम्स), लेकिन इसका विस्तार ऐसी कई परिस्थितियों के लिए करा गया है जहाँ अलग-अलग क्रियाओं का एक-दूसरे पर असर पड़ता हो। आज, "गेम थ्योरी" समाज विज्ञान के तार्किक पक्ष के लिए एक छतरी या 'यूनीफाइड फील्ड' थ्योरी की तरह है जिसमें 'सामाजिक' की व्याख्या मानव के साथ-साथ दूसरे खिलाड़ियों (कम्प्युटर, जानवर, पौधे) को सम्मिलित कर की जाती है।(Aumann 1987)
गेम थ्योरी के पारंपरिक अनुप्रयोगों में इन गेमों में साम्यावस्थाएं खोजने का प्रयास किया जाता है। साम्यावस्था में गेम का प्रत्येक खिलाड़ी एक नीति अपनाता है जो वह संभवतः नहीं बदलता है। इस विचार को समझने के लिए साम्यावस्था की कई सारी अवधारणाएं विकसित की गई हैं (सबसे प्रसिद्ध नैश इक्विलिब्रियम)। साम्यावस्था के इन अवधारणाओं की अभिप्रेरणा अलग-अलग होती है और इस बात पर निर्भर करती है कि वे किस क्षेत्र में प्रयोग की जा रहीं हैं, हालाँकि उनके मायने कुछ हद तक एक दूसरे में मिले-जुले होते हैं और मेल खाते हैं। यह पद्धति आलोचना रहित नहीं है और साम्यावस्था की विशेष अवधारणाओं की उपयुक्तता पर, साम्यवास्थाओं की उपयुक्तता पर और आमतौर पर गणितीय मॉडलों की उपयोगिता पर वाद-विवाद जारी रहते हैं।
हालाँकि इसके पहले ही इस क्षेत्र में कुछ विकास चुके थे, गेम थ्योरी का क्षेत्र जॉन वॉन न्युमन्न और ऑस्कर मॉर्गनस्टर्न की 1944 की पुस्तक थ्योरी ऑफ गेम्स ऐंड इकोनोमिक बिहेविअर के साथ आस्तित्व में आया। इस सिद्धांत का विकास बड़े पैमाने पर 1950 के दशक में कई विद्वानों द्वारा किया गया। बाद में गेम थ्योरी स्पष्टतया 1970 के दशक में जीव विज्ञान में प्रयुक्त किया गया, हालाँकि ऐसा 1930 के दशक में ही शुरू हो चुका था। गेम थ्योरी की पहचान व्यापक रूप से कई क्षेत्रों में एक महत्वपूर्ण उपकरण के रूप में की गई है। आठ गेम थ्योरिस्ट्स अर्थशास्त्र में नोबेल पुरस्कार जीत चुके हैं और जॉन मेनार्ड स्मिथ को गेम थ्योरी के जीव विज्ञान में प्रयोग के लिए क्रफूर्ड पुरस्कार से सम्मानित किया गया।
गेमों का निरूपण
[संपादित करें]गेम थ्योरी में अवलोकित गेम स्पष्टतया परिभाषित गणितीय 'ऑब्जेक्ट्स'होते हैं। एक गेम खिलाड़ियों के एक सेट, खिलाड़ियों के पास उपलब्ध चालों (नीतियों) के एक सेट और नीतियों के प्रत्येक संयोजन के लाभ के निर्धारण से बना होता है। अधिकांश 'कोऑपरेटिव गेम'(परस्पर सहयोग वाले गेम) विशेष फंक्शन फॉर्म में निरूपित किए जाते हैं, जबकि एक्सटेंसिव और नॉर्मल फॉर्म का प्रयोग नॉनकोऑपरेटिव गेमों (गेम जिनमें परस्पर सहयोग नहीं होता) को परिभाषित करने में होता है।
एक्सटेंसिव फॉर्म
[संपादित करें]
एक्सटेंसिव फॉर्म का प्रयोग कुछ महत्वपूर्ण अनुक्रम वाले गेमों को 'फॉर्मलाइज़' करने में किया जा सकता है। इसमें गेम अक्सर 'ट्रीज़' के रूप में निरूपित किए जाते हैं (जैसा कि बायीं तरफ की तस्वीर में दिखाया गया है) यहां प्रत्येक वर्टेक्स (शिखर) (या नोड) एक खिलाड़ी के लिए विकल्प की एक बिंदु दर्शाता है। खिलाड़ी 'वर्टेक्स' द्वारा सूचीबद्ध एक संख्या द्वारा निर्दिष्ट किया जाता है। वर्टेक्स से बाहर निकली रेखाएं उस खिलाड़ी के एक संभाव्य क्रिया को दर्शाती हैं। लाभ (परिणाम) ट्री के निचले हिस्से में निर्दिष्ट किए जाते हैं।
यहां चित्रित गेम में दो खिलाड़ी दिखाए गए हैं। खिलाड़ी 1 पहले चाल चलता है और या तो F या U चुनता है। खिलाड़ी 2 खिलाड़ी 1की चाल को देखता है और फिर या (or) तो A या R चुनता है । मानें कि खिलाड़ी 1 U चुनता है और फिर खिलाड़ी 2 A चुनता है, तब खिलाड़ी 1, 8 पाता है और खिलाड़ी 2, पाता है .
एक्सटेंसिव फॉर्म, वैसे गेम जिनमें दोनों चालें एक साथ नहीं चली जातीं और ऐसे गेम जिनमे जानकारी पक्की नहीं होती, इन दो प्रकार के गेमों की भी व्याख्या कर सकता है। इसे निरूपित करने के लिए विभिन्न वर्टेक्सों को- उन्हें एक ही सूचना सेट का हिस्सा दिखाने के लिए (यानी खिलाड़ी यह नहीं जानते कि वो किस बिंदु पर हैं)- या तो एक बिंदीदार (डॉटेड) रेखा से जोड़ा जाता है, या उनके दरम्यान एक बंद (क्लोज्ड) रेखा खींची जाती है।
नॉर्मल फॉर्म
[संपादित करें]Player 2 chooses Left |
Player 2 chooses Right | |
Player 1 chooses Up |
4, 3 | –1, –1 |
Player 1 chooses Down |
0, 0 | 3, 4 |
Normal form or payoff matrix of a 2-player, 2-strategy game |
नॉर्मल (या स्ट्रेटीजिक फॉर्म) आमतौर पर एक मेट्रिक्स के द्वारा निरूपित किया जाता है जिसमें खिलाड़ी, चालें और लाभ अंकित रहते हैं (दायीं और स्थित उदाहरण को देखें)। आम तौर पर यह किसी ऐसे फंक्शन के द्वारा निरूपित किया जा सकता है जो प्रत्येक खिलाड़ी के चालों के सभी संयोजनों के लाभ से सम्बद्ध रहता है। साथ में दिए गए उदाहरण में दो खिलाड़ी हैं; एक रो का चयन करता है और दूसरा कॉलम का. प्रत्येक खिलाड़ी के पास दो रणनीतियां हैं जो रो और कॉलमों की संख्या के द्वारा निर्दिष्ट की गईं हैं। लाभ अन्दर में दिए गए हैं। पहली संख्या रो वाले खिलाड़ी (हमारे उदाहरण में खिलाड़ी 1) को प्राप्त लाभ है; दूसरी संख्या कॉलम वाले खिलाड़ी (हमारे उदाहरण में खिलाड़ी 2) को प्राप्त लाभ है। मानें कि अगर खिलाड़ी 1 ऊपर चलता है खिलाड़ी 2 बाएं चलता है। तब खिलाड़ी 1 को 4 लाभ प्राप्त होता है और खिलाड़ी 2 को 3 प्राप्त होता है।
जब एक खेल नार्मल फॉर्म में प्रस्तुत किया जाता है, यह माना जाता है कि प्रत्येक खिलाड़ी एक साथ चाल चलते हैं या कम से कम दूसरे के चालों से अनभिज्ञ होते हैं। यदि खिलाड़ियों को एक दूसरे के विकल्पों की कोई जानकारी होती है तो गेम को आम तौर पर एक्सटेंसिव फॉर्म में प्रस्तुत किया जाता है।
कैरेक्टरिस्टिक फंक्शन फॉर्म
[संपादित करें]हस्तांतरणीय उपयोगिता वाले 'कोऑपरेटिव' गेमों में कोई भी स्वतंत्र अलग लाभ नहीं दिए रहते हैं। इसके बजाय, कैरेक्टरिस्टिक फंक्शन प्रत्येक गठबंधन के लिए लाभ निर्धारित करता है। मानक धारणा यह है कि खाली गठबंधन को 0 लाभ प्राप्त होता है।
इस फॉर्म का प्रारम्भिक स्रोत वॉन न्युमन्न और मॉर्गनस्टर्न की आधारभूत पुस्तक से प्राप्त होता है। उन्होंने कोअलिशनल (गठबंधनीय) नॉर्मल फॉर्म गेमों का अध्ययन करते समय यह माना (कल्पना किया) कि जब एक गठबंधन C बनता है, यह संपूरक गठबंधन (N\setminus C) के विरूद्ध खेलता है जैसे कि वो 2 खिलाड़ियों वाला गेम खेल रहे हों। C का साम्यावस्था लाभ कैरेक्टरिस्टिक होता है। अब नॉर्मल फॉर्म गेमों से कोअलिशनल (गठबंधनीय) मान निकालने के लिए विभिन्न मॉडल हैं, पर कैरेक्टरिस्टिक फॉर्म के सारे गेम नॉर्मल फॉर्म गेमों से व्युत्त्पन्न नहीं किए जा सकते।
नियमानुसार, एक कैरेक्टरिस्टिक फंक्शन फॉर्म गेम (TU-गेम नाम से भी ज्ञात) एक पेयर के रूप में निरूपित किया जाता है जहाँ खिलाड़ियों के एक सेट को व्यक्त करता है और एक कैरेक्टरिस्टिक फंक्शन होता है।
कैरेक्टरिस्टिक फंक्शन फॉर्म बिना हस्तांतरणीय उपयोगिता के अनुमार्गन वाले गेमों में सामान्यीकृत किया गया है।
पार्टीशन फंक्शन फॉर्म
[संपादित करें]कैरेक्टरिस्टिक फंक्शन फॉर्म 'कोअलिशन' (गठबंधन) के गठन के संभाव्य 'एक्सटर्नलीटीज़' को नज़रंदाज़ कर देता है। पार्टीशन फंक्शन फॉर्म में 'कोअलिशन' (गठबंधन) का लाभ सिर्फ इसके सदस्यों पर ही निर्भर नहीं करता बल्कि इस पर भी निर्भर करता है कि बाकी खिलाड़ी किस रूप में विभाजित हैं(Thrall & Lucas 1963).
अनुप्रयोग और चुनौतियां
[संपादित करें]गेम थ्योरी का प्रयोग मानव और पशु के विविध व्यवहारों के विस्तृत अध्ययन में किया गया है। शुरू में यह अर्थशास्त्र में आर्थिक व्यवहार के एक बड़े संग्रह को समझने के लिए विकसित किया गया था, जिनमें कंपनियों, बाज़ारों और उपभोगेम थ्योरी के व्यवहार शामिल हैं। सामाजिक विज्ञान में गेम थ्योरी का उपयोग और विस्तृत हुआ है और गेम थ्योरी राजनीतिक, सामाजिक और मनोवैज्ञानिक व्यवहारों के अध्ययन में भी प्रयुक्त हुआ है।
गेम थ्योरी आधारित विश्लेषण का उपयोग शुरू में 1930 के दशक में रोनाल्ड फिशर ने पशुओं के व्यवहार का अध्ययन करने के लिए किया था (यद्यपि चार्ल्स डार्विन तक ने भी कुछ अनौपचारिक गेम थ्योरी आधारित वक्तव्य दिए हैं)। यह काम "गेम थ्योरी" के नाम के आस्तित्व में आने से पहले का है, लेकिन इसकी और गेम थ्योरी की कई विशेषताएं समान हैं। अर्थशास्त्र में हुए इसके विकास का बाद में जीव विज्ञान में प्रयोगजॉन मेनर्ड स्मिथ ने अपनी पुस्तक इवोल्यूशन ऐंड द थ्योरी ऑफ़ गेम्स में किया।
व्यवहार के अनुमान और व्याख्या के अलावा गेम थ्योरी का प्रयोग नैतिक या मानक व्यवहार के सिद्धांतों को विकसित करने के प्रयास में भी किया गया है। अर्थशास्त्र और दर्शनशास्त्र में, विद्वानों ने गेम थ्योरी को अच्छे या उचित व्यवहार को समझने में भी प्रयुक्त किया है। अगर हम पीछे जाएं तो देख सकते है कि गेम थ्योरी आधारित इस प्रकार के भावार्थ को प्लेटो ने भी प्रस्तुत किया था।[1]
राजनीति विज्ञान
[संपादित करें]राजनीति विज्ञान में गेम थ्योरी का प्रयोग निष्पक्ष विभाजन, [[राजनीतिक अर्थव्यवस्था, सार्वजनिक चयन/विकल्प, युद्ध सौदेबाजी, सकारात्मक राजनीतिक सिद्धांत और सामाजिक पसंद सिद्धांत|राजनीतिक अर्थव्यवस्था[[, सार्वजनिक चयन/विकल्प, युद्ध सौदेबाजी, सकारात्मक राजनीतिक सिद्धांत और सामाजिक पसंद सिद्धांत]]]] के अतिव्यापी क्षेत्रों पर केन्द्रित है। इन क्षेत्रों में से प्रत्येक में, शोधकर्ताओं ने गेम थ्योरी आधारित मॉडलों को विकसित किया है जिनमें खिलाड़ी अक्सर मतदाता, राज्य, स्पेशल इंटरेस्ट ग्रुप और राजनीतिज्ञ होते हैं।
राजनीति विज्ञान में प्रयुक्त गेम थ्योरी के आरंभिक उदाहरणों के लिए एंथनी डाउंस का कार्य देखें। अपनी पुस्तक ऐन इकोनोमिक थ्योरी ऑफ़ डेमोक्रसीसाँचा:Harvard citations/core में उन्होंने 'होटलिंग फर्म लोकेशन (स्थिति) मॉडल'को राजनीतिक प्रणाली में प्रयुक्त किया है। डाउनसियन मॉडल में, राजनीतिक उम्मीदवार सिद्धांतों के प्रति एक आयामी नीति 'स्पेस' में प्रतिबद्ध होते हैं। सिद्धांतकार दर्शाते हैं कि किस तरह से राजनीतिक उम्मीदवार औसत मतदाताओं की पसंदीदा विचारधारा की ओर अभिसरित होंगे। बिलकुल ताज़ा उदाहरणों के लिए स्टीवन ब्राम्स, जॉर्ज ट्सेबेलिस, जीन एम. ग्रॉसमैन और एल्हानन हेल्पमैन की या डेविड ऑस्टेन-स्मिथ और जेफ्री एस. बैंक्स की पुस्तकें देखें।
लोकतांत्रिक शांति की एक खेल-सैद्धांतिक व्याख्या यह है कि जनता और लोकतंत्र की मुक्त बहस अपने इरादों से संबंधित स्पष्ट और विश्वसनीय जानकारी दूसरे राज्यों को भेजते हैं। इसके विपरीत, गैर-लोकतांत्रिक नेताओं के इरादों का पता लगाना कठिन है कि कौन-कौन सी रियायतें लागू होंगी और क्या वादों को पूरा किया जाएगा। इस तरह रियायतें प्रदान करने के प्रति अविश्वास और अनिच्छा होगी यदि विवादाधीन दलों में से कम से कम एक दल गैर-लोकतांत्रिक साँचा:Harvard citations/core है।
अर्थशास्त्र और व्यापार
[संपादित करें]अर्थशास्त्री बहुत लंबे समय से गेम थ्योरी का प्रयोग नीलामियों, मोल-भाव, द्वयाधिकारों, न्यायपूर्ण विभाजन, अल्पाधिकारों, सामाजिक नेटवर्क के निर्माण और मतदान तंत्रों सहित आर्थिक तथ्यों की व्यापक श्रेणियों के विशलेषण के लिए करते रहे हैं। यह अनुसंधान सामान्यतः रणनीतियों के विशिष्ट समुच्चयों पर केंद्रित होता है, जिन्हें खेलों में संतुलन कहते हैं। ये “समाधान अवधारणायें” सामान्यतः तार्किकता के नियमों की आवश्यकताओं पर आधारित होती हैं। गैर-सहकारी खेलों में, नैश संतुलन इनमें से सबसे प्रसिद्ध है। रणनीतियों का एक समुच्चय यदि अन्य रणनीतियों के प्रति सर्वश्रेष्ठ प्रतिक्रिया का प्रतिनिधित्व करता हो, तो वह नैश संतुलन है। इसलिये यदि सभी खिलाड़ी अपनी चालें नैश संतुलन में चल रहे हैं, तो उनके बीच पथ से हटने के लिये कोई एकतरफ़ा प्रलोभन नहीं होगा, चूंकि उनकी रणनीति सर्वश्रेष्ठ है, अतः वे वह कर सकते हैं, जो अन्य खिलाड़ी कर रहे हों।
खिलाड़ियों की व्यक्तिगेम थ्योरी उपयोगिता का प्रतिनिधित्व करने के लिये सामान्यतः खेल के मुनाफ़े को लिया जाता है। आदर्श स्थितियों में मुनाफ़ा अक्सर धन का प्रतिनिधित्व करता है, जो संभवतः किसी व्यक्ति की उपयोगिता से संबंधित होता है। हालाँकि यह धारणा त्रुटिपूर्ण हो सकती है।
अर्थशास्त्र में गेम थ्योरी पर एक प्रतिमानात्मक शोधपत्र किसी ऐसे खेल की प्रस्तुति के द्वारा प्रारंभ होता है, जो किसी विशिष्ट आर्थिक स्थिति का संक्षेपण हो। एक या एक से अधिक समाधान अवधारणायें चुनी जाती हैं और लेखक यह प्रदर्शित करता है कि प्रस्तुत खेल में रणनीति के कौन-से समुच्चय उपयुक्त प्रकार के संतुलन में हैं। स्वाभाविक रूप से हमें यह आश्चर्य हो सकता है कि इस जानकारी का क्या उपयोग किया जाए। अर्थशास्त्री और व्यापारिक प्रोफेसर दो प्राथमिक उपयोगों का सुझाव देते हैं: वर्णनात्मक और आदेशात्मक।
वर्णनात्मक
[संपादित करें]
पहला ज्ञात उपयोग इस बात को वर्णित करना है कि मानव आबादी किस प्रकार का व्यवहार करती है। कुछ विद्वान मानते हैं कि खेलों के संतुलनों की खोज कर लेने पर वे इस बात का पूर्वानुमान कर सकते हैं कि जिस खेल का अध्ययन किया जा रहा है, उसमें वर्णित स्थितियों जैसी स्थितियों से सामना होने पर वास्तविक मानव आबादी किस प्रकार का व्यवहार करेगी। गेम थ्योरी का यह विशिष्ट दृष्टिकोण नवीनतम आलोचना का सामना कर रहा है। सबसे पहले, इसकी आलोचना इस बात को लेकर की जाती है कि गेम थ्योरीकारों द्वारा बनाई गई धारणाओं का अक्सर उल्लंघन होता है। गेम थ्योरीकार यह मान सकते हैं कि खिलाड़ी अपनी विजयों को प्रत्यक्ष रूप से अधिकतम स्तर तक बढ़ाने के लिये सदैव एक ही प्रकार से कार्य करते हैं (होमो इकॉनॉमिकस मॉडल), लेकिन व्यवहारिक तौर पर, मानव स्वभाव अक्सर इस मॉडल से भिन्न होता है। इस तथ्य की अनेक व्याख्यायें हैं: तर्कहीनता, विवेचना के नये मॉडल, या यहाँ तक कि विभिन्न प्रेरक (जैसे पर्यायवाद)। प्रत्युत्तर में गेम थ्योरीकार अपनी धारणाओं की तुलना भौतिक-शास्त्र में प्रयुक्त धारणाओं के साथ करते हैं। इस प्रकार हालाँकि उनकी धारणायें सदैव सही साबित नहीं होतीं, लेकिन वे गेम थ्योरी को भौतिक-शास्त्रियों द्वारा प्रयुक्त प्रतिमानों के समान वैज्ञानिक आदर्श के रूप में प्रयोग कर सकते हैं। हालाँकि इस गेम थ्योरी के प्रयोग पर कुछ अतिरिक्त आलोचना भी लादी जाती है क्योंकि कुछ अध्ययनों ने यह प्रदर्शित किया है कि व्यक्ति संतुलन रणनीतियों का प्रयोग नहीं करते। उदाहरण के लिए शतपद खेल (centipede game) में, एक औसत खेल का 2/3 भाग अनुमान पर आधारित होता है और तानाशाह खेल (Dictator game) में लोग नियमित रूप से नैश संतुलनों के द्वारा नहीं खेलते। इन अध्ययनों के महत्व के सन्दर्भ में बहस जारी है।[2]
वैकल्पिक रूप से, कुछ लेखक दावा करते हैं कि नैश संतुलन मानव आबादियों के लिये पूर्वानुमान नहीं प्रदान करते, बल्कि वे इस बात की व्याख्या करते हैं कि नैश संतुलनों से खेलने वाली आबादियां उस अवस्था में ही क्यों बनी रहतीं हैं। हालाँकि यह सवाल फ़िर भी खुला रहता है कि आबादियां उस बिंदु तक कैसे पहुँचतीं हैं।
अपनी चिंताओं के समाधान के लिये कुछ सिद्धांतकार विकासवादी गेम थ्योरी की ओर मुड़ गये हैं। ये प्रतिमान या तो खिलाड़ियों के लिये कोई तार्किकता नहीं मानते या परिबद्ध तार्किकता मानते हैं। अपने नाम के बावजूद विकासवादी गेम थ्योरी आवश्यक रूप से जैविक अर्थ में प्राकृतिक चयन को नहीं मानता। विकासवादी गेम थ्योरी जैविक और साथ ही सांस्कृतिक विकास तथा व्यक्तिगेम थ्योरी शिक्षा के प्रतिमान (उदाहरणार्थ काल्पनिक खेल गेम थ्योरी िविज्ञान) दोनों को शामिल करता है।
आदेशात्मक या निर्देशात्मक विश्लेषण
[संपादित करें]Cooperate | Defect | |
Cooperate | -1, -1 | -10, 0 |
Defect | 0, -10 | -5, -5 |
The Prisoner's Dilemma |
दूसरी ओर, कुछ विद्वान गेम थ्योरी को मनुष्यों के व्यवहार के लिये एक भविष्यसूचक उपकरण के रूप में नहीं, बल्कि इस बात के एक सुझाव के रूप में देखते हैं कि लोगों को किस प्रकार का व्यवहार करना चाहिये। चूंकि किसी खेल का एक नैश संतुलन अन्य खिलाड़ियों की गेम थ्योरी विधियों के प्रति व्यक्ति की सर्वश्रेष्ठ प्रतिक्रिया का निर्माण करता है, अतः ऐसी चाल चलना उपयुक्त प्रतीत होता है, जो नैश संतुलन का एक भाग हो। हालाँकि, गेम थ्योरी के लिए यह प्रयोग भी आलोचना के अंतर्गेम थ्योरी आ गया है। सबसे पहले, कुछ मामलों में गैर-संतुलन रणनीति का प्रयोग करना तब उपयुक्त होता है, जब व्यक्ति को अन्य खिलाड़ियों द्वारा भी एक गैर-संतुलन रणनीति का प्रयोग करने की उम्मीद हो। एक उदाहरण के लिये, औसत का 2/3 अनुमान देखें.
दूसरा, क़ैदी का असमंजस (Prisoner's dilemma) एक अन्य संभावित प्रति-उदाहरण प्रस्तुत करता है। कैदी का असमंजस में, अपने स्वार्थ की पूर्ति का प्रयास करते हुए प्रत्येक खिलाड़ी दोनों खिलाड़ियों को उससे बुरी स्थिति में ले आता है, जिसमें वे अपने स्वार्थ की पूर्ति का प्रयास न करने पर रहे होते।
जीवविज्ञान
[संपादित करें]Hawk | Dove | |
Hawk | v−c, v−c | 2v, 0 |
Dove | 0, 2v | v, v |
The hawk-dove game |
अर्थशास्त्र के विपरीत, जीवविज्ञान में खेलों के लिये लाभ की व्याख्या अक्सर योग्यता के संबंध में की जाती है। इसके अतिरिक्त तार्किकता के विचार से संबंधित संतुलनों पर कम और विकासवादी शक्तियों द्वारा बनाये रखे जा सकने वाले संतुलनों पर ज़्यादा ध्यान केंद्रित किया जाता रहा है। जीवविज्ञान में ज्ञात सर्वश्रेष्ठ संतुलन को विकासवादी स्थिर रणनीति (Evolutionary Stable Strategy [अथवा ESS]) के रूप में जाना जाता है और इसे सबसे पहले (Smith & Price 1973) में प्रस्तुत किया गया था। हालाँकि इसकी प्रारंभिक प्रेरणा में नैश संतुलन की कोई भी मानसिक आवश्यकता शामिल नहीं थी, लेकिन प्रत्येक ESS एक नैश संतुलन होता है।
जीव विज्ञान में गेम थ्योरी का उपयोग अनेक भिन्न तथ्यों को समझने में किया गया है। सबसे पहले इसका उपयोग 1:1 लिंग अनुपात की उत्पत्ति (और स्थिरता) की व्याख्या करने के लिये किया गया था।(Fisher 1930) ने यह सुझाव दिया कि 1:1 लिंग अनुपात उन व्यक्तियों पर कार्य कर रही विकासवादी शक्तियों का परिणाम है, जिन्हें अपने पौत्रों की संख्या को अधिकतम स्तर तक बढ़ाने का प्रयास करने वालों के रूप में देखा जा सकता है।
इसके अतिरिक्त, जीव-विज्ञानियों ने विकासवादी गेम थ्योरी और ESS का उपयोग पशुओं के बीच संप्रेषण के आविर्भाव की व्याख्या करने के लिये किया है।(Harper & Maynard Smith 2003) संकेत खेलों और अन्य संप्रेषण खेलों के विश्लेषण ने पशुओं के बीच संप्रेषण की उत्पत्ति की कुछ जानकारी प्रदान की है। उदाहरण के लिए, पशुओं की अनेक प्रजातियों, जिनमें शिकारी जानवरों की एक बड़ी संख्या किसी बड़े परभक्षी पर हमला करती है, में सामूहिक आक्रमण का व्यवहार सहज रूप से उत्पन्न संगठन का एक उदाहरण प्रतीत होता है।
क्षेत्रीयता और लड़ाई के व्यवहार का विश्लेषण करने के लिये जीव-विज्ञानियों ने चूज़ों के खेल का प्रयोग किया है। [उद्धरण चाहिए]
खेलों की उत्पत्ति और सिद्धांत (Evolution and the theory of Games) की प्रस्तावना में मेनार्ड स्मिथ लिखते हैं, “[वि]रोधाभासी रूप से, यह पाया गया है कि गेम थ्योरी अर्थशास्त्रीय व्यवहार के क्षेत्र, जिसके लिये वह मूल रूप से बनाया गया था, की बजाय जीवविज्ञान पर ज़्यादा अच्छी तरह लागू होता है”। विकासवादी गेम थ्योरी का प्रयोग प्रकृति में असंगेम थ्योरी प्रतीत होने वाले अनेक तथ्यों की व्याख्या करने के लिये किया जाता रहा है।[3]
ऐसे ही एक तथ्य को जैविक परोपकारिता कहते हैं। यह एक ऐसी स्थिति है, जिसमें एक जीव ऐसी पद्धति से कार्य करता हुआ दिखाई देता है, जो अन्य जीवों के लिये लाभदायक और स्वयं उसके लिये अहितकर होती है। यह परोपकारिता की पारंपरिक धारणा से भिन्न है, क्योंकि ऐसे कार्य सचेतन नहीं होते, बल्कि सकल योग्यता को बढ़ाने के लिये विकासवादी अनुकूलन के रूप में दिखाई देते हैं। इसके उदाहरण पिशाच चमगादड़ों, जो रात के शिकार से हासिल किये गये खून को उगलकर अपने समूह के उन सदस्यों को दे देते हैं, जो शिकार कर पाने में असफल रहे हों, से लेकर कर्मी मधुमक्खियों, जो आजीवन रानी मधुमक्खी की सेवा करती हैं और कभी मिलन नहीं करतीं, से लेकर वर्वेट बंदरों, जो समूह के सदस्यों को शिकारी के आगमन की चेतावनी देते हैं, भले ही इससे उनका स्वयं का जीवन ख़तरे में पड़ जाये, तक में पाये जा सकते हैं।[4] इनमें से सभी कार्य एक समूह की सकल योग्यता को बढ़ाते हैं, लेकिन ऐसा करने के लिये एक जीव को अपनी जान गंवानी पड़ती है।
विकासवादी गेम थ्योरी इस परोपकारिता की व्याख्या संबंधियों के चयन के विचार के रूप में करता है। परोपकारी जीव उन प्राणियों के बीच भेद-भाव करते हैं, जिनकी वे सहायता करते हैं और वे अपने संबंधियों का पक्ष लेते हैं। हैमिल्टन का नियम इस चयन के पीछे विकासवादी तर्क की व्याख्या सूत्र c<b*r के द्वारा करता है, जहाँ परोपकारी को लगनेवाली लागेम थ्योरी (c) प्राप्तकर्ता को मिलनेवाले लाभ (b) व संबद्धता के गुणांक (r) के गुणनफल से कम होनी चाहिये। दो जीवों के बीच निकटता जितनी अधिक होगी, परोपकारिता की घटनायें भी उतनी ही बढ़ जाएंगी क्योंकि उनके अनेक जिनेटिक तत्व (alleles) समान होंगे। इसका अर्थ यह है कि परोपकारी जीव, इस बात को सुनिश्चित करते हुए कि उसके निकट संबंधियों के जेनेटिक तत्व आगे प्रसारित होते हैं, (उसकी संतान के द्वारा), स्वयं की संतान को जन्म देने के विकल्प का त्याग कर सकता है क्योंकि समान संख्या में जेनेटिक तत्व आगे प्रसारित हुए हैं। उदाहरणार्थ, किसी सहोदर की सहायता करने का गुणांक 1/2 होता है क्योंकि जीव अपने सहोदर की संतान में 1/2 जेनेटिक तत्व साझा करता है। इस बात को सुनिश्चित कर लेना कि किसी सहोदर की संतानों की पर्याप्त संख्या वयस्क होने तक जीवित रहती है, परोपकारी व्यक्ति के लिये स्वयं की संतान उत्पन्न करने की आवश्यकता को समाप्त कर देता है।[4] गुणांक मान खेल के मैदान के दायरे पर अत्यधिक आश्रित होते हैं: उदाहरणार्थ, जिनके प्रति पक्षपात करना है, उनके चुनाव में यदि सभी जेनेटिक जीवित वस्तुएं, केवल संबंधी नहीं, शामिल हों, तो हम मानते हैं कि सभी मनुष्यों के बीच अंतर खेल के मैदान में विविधता का लगभग 1% होता है, जो गुणांक एक छोटे क्षेत्र में 1/2 था, वह 0.995 हो जाता है। इसी प्रकार यदि इस पर विचार किया जाये कि जेनेटिक स्वरूप की किसी सूचना के अतिरिक्त कोई अन्य सूचना (उदा. एपिजेनेटिक्स, धर्म, विज्ञान आदि) समय के साथ बनी रहती है, तो खेल का मैदान और बड़ा व भेद-भाव छोटे हो जाते हैं।
कंप्यूटर विज्ञान और तर्क
[संपादित करें]तर्क और कंप्यूटर विज्ञान में गेम थ्योरी एक बढ़ती हुई महत्वपूर्ण भूमिका निभाने लगा है। अनेक तार्किक सिद्धांतों का आधार खेल अर्थविज्ञान में है। इसके अतिरिक्त, कंप्यूटर वैज्ञानिकों ने अनेक अंतःक्रियात्मक गणनाओं का निर्माण करने के लिये खेलों का प्रयोग किया है। साथ ही, गेम थ्योरी बहु-अभिकर्ता तंत्रों के क्षेत्र का एक सैद्धांतिक आधार प्रदान करता है।
पृथक रूप से, गेम थ्योरी ने ऑनलाइन एल्गोरिथ्म में भी भूमिका निभाई है। विशिष्टतः, k-सर्वर समस्या, जिसका उल्लेख अतीत में चल-लागेम थ्योरी वाले खेल (games with moving costs) और निवेदन-उत्तर खेल (request-answer games) के रूप में किया जाता था।साँचा:Harvard citations/core याओ का सिद्धांत यादृच्छिकृत एल्गोरिथ्म और विशेषतः ऑनलाइन एल्गोरिथ्म, की गणनात्मक जटिलता की निचली सीमाओं को सिद्ध करने के लिये एक खेल-सैद्धांतिक तकनीक है।
एल्गोरिथ्मिक गेम थ्योरी का क्षेत्र जटिलता और एल्गोरिथ्म की रचना की कंप्यूटर विज्ञान की अवधारणाओं को गेम थ्योरी और आर्थिक सिद्धांत के साथ संयोजित करता है। इंटरनेट के उद्भव ने खेलों, बाज़ारों, गणनात्मक नीलामियों, पीयर-से-पीयर तंत्रों और सुरक्षा तथा सूचना बाज़ार में संतुलनों की ख़ोज करने के लिये एल्गोरिथ्म के विकास को प्रेरित किया है।[5]
दर्शनशास्त्र
[संपादित करें]Stag | Hare | |
Stag | 3, 3 | 0, 2 |
Hare | 2, 0 | 2, 2 |
Stag hunt |
दर्शनशास्त्र में गेम थ्योरी के अनेक उपयोग हैं। साँचा:Harvard citations/core द्वारा प्रस्तुत दो शोध-पत्रों पर प्रतिक्रिया देते हुए, Lewis (1969) ने सम्मेलन की एक दार्शनिक समझ विकसित करने के लिये गेम थ्योरी का प्रयोग किया। ऐसा करते हुए, उन्होंने सामान्य ज्ञान का प्रारंभिक विश्लेषण प्रदान किया और ताल-मेल संबंधी खेलों में खेल के विश्लेषण के लिये इसका प्रयोग किया। इसके अतिरिक्त, पहले उन्होंने यह सुझाव दिया कि व्यक्ति अर्थ को संकेत खेलों के सन्दर्भ में समझ सकता है। लुईस के बाद अनेक दार्शनिकों द्वारा इस सुझाव का प्रयोग किया गया है (Skyrms (1996),साँचा:Harvard citations/core). सम्मेलनों के खेल-सैद्धांतिक Lewis (1969) के बाद, उल्मैन मार्गेलिट (1977) और बिचेरी (2006) ने सामाजिक नियमों के ऐसे सिद्धांत विकसित किये हैं, जो उन्हें एक मिश्रित-उद्देश्य वाले खेल को एक ताल-मेल संबंधी खेल में रूपांतरित करने के परिणामस्वरूप प्राप्त होने वाले नैश संतुलनों के रूप में परिभाषित करते हैं।[6]
गेम थ्योरी दार्शनिकों को अंतःक्रियात्मक ज्ञानमीमांसा के संबंध में सोचने की चुनौती भी देता है: किसी समूह के लिये समान विश्वासों या ज्ञान का क्या अर्थ होता है और अभिकर्ताओं की अंतःक्रिया के कारण मिलनेवाले सामाजिक परिणामों पर इस ज्ञान का क्या प्रभाव पड़ता हैं। इस क्षेत्र में कार्य करने वाले दार्शनिकों में बिचेरी (1989, 1993),[7] स्किर्म्स (1990),[8] तथा स्टालनेकर (1999)[9] शामिल हैं।
नीतिशास्त्र में, कुछ लेखकों ने, थॉमस हॉब्स द्वारा शुरु की गई, स्वार्थ से नैतिकता प्राप्त करने की परियोजना का अनुसरण करने का प्रयास किया है। चूंकि क़ैदी का असमंजस नैतिकता और स्वार्थ के बीच एक आभासीय संघर्ष को प्रस्तुत करता है, अतः इस बात की व्याख्या करना इस परियोजना का एक महत्वपूर्ण घटक है कि स्वार्थ के लिये सहकारिता की आवश्यकता क्यों होती है। यह सामान्य रणनीति राजनैतिक दर्शनशास्त्र में सामान्य सामाजिक अनुबंध के दृष्टिकोण का एक घटक होती है (उदाहरण के लिये, Gauthier (1986) तथा Kavka (1986) देखें).[10]
अन्य लेखकों ने नैतिकता के प्रति मानवीय दृष्टिकोण के उद्भव तथा इस संबंध में पशुओं के व्यवहारों की व्याख्या करने के लिये विकासवादी गेम थ्योरी का प्रयोग करने का प्रयास किया है। ये लेखक क़ैदी का असमंजस (Prisoner's dilemma), बारहसिंगे का शिकार (Stag hunt) सहित विभिन्न खेलों और नैश सौदेबाज़ी खेल (Nash bargaining game) को नैतिकता के दृष्टिकोण के उद्भव की व्याख्या प्रदान करनेवालों के रूप में देखते हैं (उदा.साँचा:Harvard citations/core तथा साँचा:Harvard citations/core देखें)।
गेम थ्योरी के कुछ भागों में प्रयुक्त कुछ पूर्वानुमानों को दर्शनशास्त्र में चुनौती दी गई है; मनोवैज्ञानिक अहंभाव कहता है कि तार्किकता स्वार्थ को कम करती है-एक दावा, जो दार्शनिकों के लिये बहस का विषय है। (मनोवैज्ञानिक अहंभाव#आलोचना देखें)
खेलों के प्रकार
[संपादित करें]सहकारी या गैर-सहकारी
[संपादित करें]एक खेल सहकारी होता है, यदि खिलाड़ी बंधनकारी प्रतिबद्धताओं का निर्माण कर पाने में सक्षम हों। उदाहरण के लिये कानूनी तंत्र उनके लिये अपने वचनों का पालन करना आवश्यक बनाता है। गैर-सहकारी खेलों में यह संभव नहीं होता।
अक्सर ऐसा माना जाता है कि सहकारी खेलों में खिलाड़ियों के बीच संवाद की अनुमति दी जाती है, लेकिन गैर-सहकारी खेलों में नहीं। यह वर्गीकरण दो द्विआधारी कसौटियों के आधार पर अस्वीकार कर दिया गया है।(Harsanyi 1974)
खेल के दो प्रकारों में से, गैर-सहकारी खेल सर्वश्रेष्ठ विवरणों तक परिस्थितियों के प्रदर्शन में सक्षम होते हैं और सटीक परिणाम उत्पन्न करते हैं। सहकारी खेल व्यापक रूप से खेल पर केंद्रित होते हैं। इन दो मार्गों को जोड़ने के लक्षणीय प्रयास किये गये हैं। तथाकथित नैश-प्रोग्राम [तथ्य वांछित] ने पहले ही अनेक सहकारी स्थितियों को गैर-सहकारी संतुलनों के रूप में स्थापित कर दिया है।
संकरित खेलों में सहकारी व गैर-सहकारी तत्व होते हैं। उदाहरण के लिये सहकारी खेलों में खिलाड़ियों के गठबंधन बनाये जाते हैं, लेकिन वे एक गैर-सहकारी शैली में खेलते हैं।
सममित और असममित
[संपादित करें]E | F | |
E | 1, 2 | 0, 0 |
F | 0, 0 | 1, 2 |
An asymmetric game |
एक सममित खेल ऐसा खेल होता है, जिसमें किसी विशिष्ट रणनीति के अनुसार खेलने का लाभ केवल अन्य प्रयुक्त रणनीतियों पर निर्भर करता है, न कि उन्हें खेलनेवालों पर। यदि रणनीतियों से मिलनेवाले मुनाफ़े को बदले बिना खिलाड़ियों की पहचान बदली जा सकती हो, तो खेल सममित होता है। सामान्यतः अध्ययन किये जाने वाले 2 × 2 खेलों में से अनेक सममित होते हैं। चिकन, क़ैदी का असमंजस और बारहसिंगे का शिकार के मानक प्रदर्शन सभी सममित खेल हैं। कुछ विद्वान इन खेलों के उदाहरणों के रूप में विभिन्न असममित खेलों पर विचार कर सकते हैं। हालाँकि इनमें से प्रत्येक खेल के लिये सर्वाधिक प्रचलित लाभ सममित होते हैं।
सर्वाधिक अध्ययन किये जाने वाले असममित खेल वे खेल होते हैं, जिनमें दोनों खिलाड़ियों के लिये रणनीतियों के समान समुच्चय नहीं होते। उदाहरण के लिए, अल्टिमेट गेम और डिक्टेटर गेम में प्रत्येक खिलाड़ी के लिये भिन्न रणनीतियां होती हैं। हालाँकि, यह भी संभव है कि किसी खेल में दोनों खिलाड़ियों के लिये एक समान रणनीतियां हों और फ़िर भी वह असममित हो। उदाहरण के लिये, दोनों खिलाड़ियों के लिये रणनीतियों के समान समुच्चय होने के बावजूद भी दाहिनी ओर चित्रित खेल असममित है।
शून्य-राशि और गैर-शून्य-राशि
[संपादित करें]A | B | |
A | –1, 1 | 3, –3 |
B | 0, 0 | –2, 2 |
A zero-sum game |
शून्य-राशि खेल स्थिर-राशि खेलों के विशेष उदाहरण हैं, जिनमें खिलाड़ियों द्वारा किये गये चयन उपलब्ध संसाधनों को न तो बढ़ाते हैं और न ही घटाते हैं। शून्य-राशि खेलों में, रणनीतियों के प्रत्येक संयोजन के लिये, खेल के सभी खिलाड़ियों को मिलनेवाले कुल लाभ का योगफल शून्य होता है (अधिक अनौपचारिक रूप से, एक खिलाड़ी को होने वाला लाभ अन्य खिलाड़ियों की उतनी ही हानि के द्वारा होता है)। पोकर का खेल एक शून्य-राशि खेल का उदाहरण प्रस्तुत करता है (किसी घर में कटौती की संभावना की अनदेखी करते हुए) क्योंकि कोई भी खिलाड़ी ठीक उतनी ही रक़म जीतता है, जितनी उसके प्रतिद्वंद्वी हारते हैं। अन्य शून्य-राशि खेलों में सिक्कों का मिलान (matching pennis) और गो तथा शतरंज सहित अधिकांश शास्त्रीय बोर्ड खेल शामिल हैं।
गेम थ्योरीकारों द्वारा जिन खेलों का अध्ययन किया गया है, उनमें से अधिकांश (प्रसिद्ध क़ैदी का असमंजस सहित) गैर-शून्य-राशि खेल हैं क्योंकि उनमें से कुछ प्राप्तियों के सकल परिणाम शून्य से ज़्यादा या कम होते हैं। अनौपचारिक रूप से, गैर-शून्य-राशि खेलों में, किसी एक खिलाड़ी को मिलनेवाला लाभ आवश्यक तौर पर किसी अन्य खिलाड़ी को होने वाली हानि से जुड़ा नहीं होता।
स्थिर-राशि खेल चोरी और जुए जैसी गेम थ्योरी विधियों से संबंधित होते हैं, लेकिन उस मूलभूत आर्थिक परिस्थिति से नहीं, जिसमें व्यापार से लाभ संभावित होते हैं। एक अतिरिक्त नकली खिलाड़ी (जिसे अक्सर "बोर्ड" कहा जाता है), जिसकी हानियां खिलाड़ी के शुद्ध लाभ की क्षतिपूर्ति करती हैं, को जोड़कर किसी भी खेल को एक (संभवतः असममित) शून्य-राशि खेल में रूपांतरित कर पाना संभव होता है।
समकालिक और आनुक्रमिक
[संपादित करें]समकालिक खेल ऐसे खेल होते हैं, जिनमें दोनों खिलाड़ी अपनी चाल एक साथ चलते हैं, या यदि वे एक साथ चाल नहीं चलते, तो बाद वाले खिलाड़ी पहले खेलने वाले खिलाड़ियों की चाल से अनभिज्ञ होते हैं (जो उन्हें प्रभावी रूप से समकालिक बनाता है)। आनुक्रमिक खेल (या गेम थ्योरी शील खेल) ऐसे खेल होते हैं, जिनमें बाद में खेलने वाले खिलाड़ियों को पूर्ववर्ती चालों की कुछ जानकारी होती है। यह आवश्यक रूप से पूर्ववर्ती खिलाड़ियों की प्रत्येक गेम थ्योरी विधि की पूर्ण जानकारी नहीं होती; यह बहुत थोड़ी जानकारी हो सकती है। उदाहरण के लिये, संभव है कि कोई खिलाड़ी यह जानता हो कि किसी पूर्ववर्ती खिलाड़ी ने कोई विशिष्ट चाल नहीं चली थी, जबकि वह यह न जानता हो कि पहले खिलाड़ी ने अन्य उपलब्ध चालों में से वस्तुतः कौन-सी चाल चली थी।
समकालिक और आनुक्रमिक खेलों में मुख्य अंतर ऊपर चर्चित विभिन्न प्रदर्शनों में सम्मिलित किये गये हैं। अक्सर, समकालिक खेलों को दर्शाने के लिये सामान्य रूप का और आनुक्रमिक खेलों को दर्शाने के लिये विस्तृत रूप का प्रयोग किया जाता है; हालाँकि, तकनीकी रूप से यह कोई सख़्त नियम नहीं है।
पूर्ण जानकारी और अपूर्ण जानकारी
[संपादित करें]
आनुक्रमिक खेलों का एक महत्वपूर्ण उप-समुच्चय पूर्ण जानकारी से मिलकर बना होता है। एक खेल पूर्ण जानकारी से युक्त होता है, यदि सभी खिलाड़ी अन्य खिलाड़ियों द्वारा पहले चली गई चालों के बारे में जानते हों। इस प्रकार, केवल आनुक्रमिक खेल ही पूर्ण जानकारी वाले हो सकते हैं क्योंकि समकालिक खेलों में प्रत्येक खिलाड़ी अन्य खिलाड़ियों की चालों को नहीं जानता। गेम थ्योरी में अध्ययन किये जाने वाले अधिकांश खेल अपूर्ण-जानकारी वाले खेल होते हैं, हालाँकि, अल्टिमेट गेम और शतपद खेल सहित पूर्ण-जानकारी वाले खेलों के कुछ रोचक उदाहरण उपलब्ध हैं। पूर्ण-जानकारी वाले खेलों में शतरंज, गो, मैंकला और अरिमा शामिल हैं।
पूर्ण जानकारी को अक्सर समस्त जानकारी समझ लिया जाता है, जो एक सदृश अवधारणा है। समस्त जानकारी के लिये प्रत्येक खिलाड़ी को अन्य खिलाड़ियों की रणनीतियों व प्राप्तियों की जानकारी होना आवश्यक है, लेकिन उनकी गेम थ्योरी विधियों की जानकारी होना आवश्यक नहीं है।
असीमित रूप से लंबे खेल
[संपादित करें]अर्थशास्त्रियों और वास्तविक-विश्व के खिलाड़ियों द्वारा अध्ययन किये जाने वाले खेल सामान्यतः चालों की सीमित संख्या में समाप्त हो जाते हैं। शुद्ध गणितज्ञ उतने बाध्य नहीं होते और समुच्चय सिद्धांतकार विशिष्टतः उन खेलों का अध्ययन करते हैं, जो चालों की असीमित संख्या तक जारी रहते हैं और उनमें विजेता (या अन्य लाभ) उन सभी चालों की समाप्ति के बाद तक ज्ञात नहीं होता।
सामान्यतः ध्यान इस बात पर ज़्यादा केंद्रित नहीं होता कि ऐसे खेलों को खेलने की सर्वश्रेष्ठ विधि क्या है, बल्कि केवल इस पर होता है कि क्या किसी खिलाड़ी के पास जीतने की रणनीति है। (चयन के सिद्धांत का प्रयोग करके यह सिद्ध किया जा सकता है कि ऐसे खेल होते हैं- यहाँ तक कि पूर्ण जानकारी के साथ और जहाँ परिणाम केवल "जीत" या "हार" होते हैं- जिनके लिये किसी खिलाड़ी के पास जीतने की रणनीति नहीं होती)। निपुणता से रचित खेलों के लिये वर्णनात्मक समुच्चय सिद्धांत में ऐसी रणनीतियों के अस्तित्व के महत्वपूर्ण प्रभाव होते हैं।
असतत और सतत खेल
[संपादित करें]गेम थ्योरी का अधिकांश भाग सीमित, असतत खेलों से संबंधित होता है, जिनमें खिलाड़ियों, चालों, घटनाओं, परिणामों आदि की संख्या सीमित होती है। हालाँकि अनेक अवधारणाएं विस्तारित की जा सकती हैं। सतत खेल अपने खिलाड़ियों को एक सतत रणनीति समुच्चय में से किसी रणनीति का चयन करने की अनुमति देते हैं। उदाहरण के लिये, कॉर्नट प्रतियोगिता की रचना विशिष्ट रूप से इस प्रकार की गई है कि खिलाड़ियों की रणनीतियां कोई गैर-नकारात्मक मात्राएं, भिन्नात्मक मात्राओं सहित, होती हैं।
अंतरीय खेल, जैसे कन्टिन्युअस पर्स्युट एंड इवेजन खेल सतत खेल हैं।
एक-खिलाड़ी और अनेक-खिलाड़ियों वाले खेल
[संपादित करें]व्यक्तिगेम थ्योरी निर्णय समस्याओं को कभी-कभी "एक-खिलाड़ी वाले खेल" माना जाता है। हालाँकि ये स्थितियां खेल सैद्धांतिक नहीं हैं, लेकिन उनकी रचना निर्णय सिद्धांत के नियमों के अंतर्गेम थ्योरी उन्हीं उपकरणों में से अनेक का प्रयोग करके की जाती है। केवल दो या दो से अधिक खिलाड़ियों के होने पर ही कोई समस्या खेल सैद्धांतिक बनती है। अक्सर बेतरतीब ढ़ंग से खेलने वाला कोई खिलाड़ी जोड़ा जाता है, जो "अवसरवादी चालें" चलता है, जिन्हें "स्वाभाविक चालों" के रूप में भी जाना जाता है।(Osborne & Rubinstein 1994) दो-खिलाड़ियों वाले किसी खेल में इस खिलाड़ी को तीसरा खिलाड़ी नहीं माना जाता, बल्कि खेल में जहाँ आवश्यक हो, वहाँ वह केवल पासे की भूमिका निभाता है। खिलाड़ियों की असीमित संख्या वाले खेलों को अक्सर n-व्यक्ति खेल कहा जाता है।(Luce & Raiffa 1957)
मेटाखेल
[संपादित करें]ये वे खेल हैं जिन्हें खेलना किसी अन्य खेल, लक्ष्य या विषय खेल, के लिये नियमों का विकास करना होता है। मेटाखेल विकसित किये गये नियमों के समूह के उपयोगिता मान को अधिकतम स्तर तक बढ़ाने का प्रयास करते हैं। मेटाखेलों का सिद्धांत क्रियाविधि रचना सिद्धांत से संबंधित होता है।
इतिहास
[संपादित करें]गेम थ्योरी की पहली ज्ञात चर्चा 1713 में जेम्स वाल्डेग्रेव द्वारा लिखित एक पत्र में हुई। इस पत्र में वाल्डेग्रेव ताश के खेल ले हर के दो-व्यक्तियों वाले संस्करण के समाधान के लिये एक मिनिमैक्स मिश्रित सिद्धांत प्रदान करते हैं।
जेम्स मेडिसन ने उसका निर्माण किया, जिसे अब हम इस बात के खेल-सैद्धांतिक विश्लेषण के रूप में जानते हैं कि करारोपण के विभिन्न तंत्रों के अंतर्गेम थ्योरी अवस्थाओं से किस प्रकार का व्यवहार करने की अपेक्षा की जा सकती है।[11][12]
एंटोनी ऑगस्टिन कॉर्नट द्वारा 1838 में Recherches sur les principes mathématiques de la théorie des richesses (धन के सिद्धांत के गणितीय सिद्धांतों में अनुसंधान) का प्रकाशन किये जाने तक किसी सामान्य खेल सैद्धांतिक विश्लेषण का अनुसरण नहीं किया जाता था। इस कार्य में कॉर्नट ने एक द्वयाधिकार पर विचार किया है और एक समाधान प्रस्तुत किया है, जो नैश संतुलन का एक सीमित संस्करण है।
हालाँकि कॉर्नट का विश्लेषण वाल्डेग्रेव के विश्लेषण से अधिक सामान्य है, लेकिन जॉन वॉन न्यूमैन द्वारा 1928 में शोध-पत्रों की एक शृंखला का प्रकाशन किये जाने से पूर्व तक एक अद्वितीय क्षेत्र के रूप में गेम थ्योरी का वस्तुतः कोई अस्तित्व नहीं था। हालाँकि फ़्रांसीसी गणितज्ञ एमिली बोरेल ने खेलों पर कुछ प्रारंभिक कार्य किया, लेकिन वॉन न्यूमैन को गेम थ्योरी का आविष्कारक होने का श्रेय उचित रूप से दिया जा सकता है। वॉन न्यूमैन एक बुद्धिमान गणितज्ञ थे, जिनका कार्य समुच्चय सिद्धांत से लेकर उनकी गणनाओं, जो अणु व हाइड्रोजन बमों दोनों के विकास की कुंजी थीं और अंततः संगणकों के विकास के उनके कार्य तक व्यापक रूप से फ़ैला हुआ था। गेम थ्योरी में वॉन न्यूमैन का कार्य 1944 में वॉन न्यूमैन और ऑस्कर मॉर्गेन्स्टेम की क़िताब Theory of Games and Economic Behavior (खेलों और आर्थिक व्यवहार का सिद्धांत) में अपने चरम पर पहुंचा। इस गहन कार्य में दो-व्यक्तियों वाले शून्य-राशि खेलों के लिये परस्पर संगेम थ्योरी समाधानों की खोज करने हेतु विधियां शामिल हैं। इस समयावधि के दौरान, गेम थ्योरी पर कार्य प्राथमिक रूप से सहकारी गेम थ्योरी पर केंद्रित था, जो व्यक्तियों के समूह के लिये यह मानते हुए इष्टतम रणनीतियों का विश्लेषण करता है कि वे उपयुक्त रणनीतियों के बारे में अपने बीच सहमति लागू कर सकते हैं।
1950 में, क़ैदी का असमंजस प्रकट हुआ और RAND कार्पोरेशन में इस खेल पर एक प्रयोग किया गया। इसी समय के आस-पास, जॉन नैश ने खिलाड़ियों की रणनीतियों की परस्पर संगेम थ्योरी ता के लिये एक मापदंड विकसित किया, जिसे नैश संतुलन के रूप में जाना जाता है और जो वॉन न्यूमैन और मॉर्गेन्स्टेम द्वारा प्रस्तावित मापदंड की तुलना में खेलों की एक व्यापक श्रेणी पर लागू होता है। यह संतुलन पर्याप्त रूप से इतना सामान्य है कि यह सहकारी खेलों के अतिरिक्त गैर-सहकारी खेलों के विश्लेषण की अनुमति भी देता है।
1950 के दशक में गेम थ्योरी ने गेम थ्योरी विधियों की एक हलचल का अनुभव किया, जिस समय के दौरान मूल, गहन स्वरूप के खेल, काल्पनिक खेल, दोहराये गये खेलों और शेपले (Shapley) मान की अवधारणाएं विकसित हुईं। इसके अतिरिक्त, इसी समय के दौरान दर्शनशास्त्र और राजनीति विज्ञान में गेम थ्योरी को पहली बार लागू किया गया।
1965 में, रीनहार्ड सेल्टन ने उपखेल पूर्ण संतुलनों (subgame perfect equilibria) की अपनी समाधान अवधारणा प्रस्तुत की, जिसने नैश संतुलन को और अधिक परिष्कृत किया (बाद में उन्हें [[कांपते हाथ का अनुभव [trembling hand perception]]] भी प्रस्तुत करना था)। 1967 में, जॉन हर्सेन्यि ने संपूर्ण सूचना और बायेसियन खेलों की अवधारणाएं विकसित कीं। आर्थिक गेम थ्योरी में उनके योगदान के लिये नैश, सेल्टन और हर्सेन्यि 1994 में अर्थशास्त्र के नोबल पुरस्कार विजेता बने।
1970 के दशक में, मुख्यतः जॉन मेनार्ड स्मिथ और उनकी विकासवादी रूप से स्थिर रणनीति के कार्य के फलस्वरूप गेम थ्योरी को जीवविज्ञान में गहन रूप से लागू किया गया। इसके अतिरिक्त सहसंबद्ध संतुलन, कांपते हाथ का अनुभव और सामान्य ज्ञान की अवधारणाएं[13] प्रस्तुत की गईं और उनका विश्लेषण किया गया।
2005 में, गेम थ्योरीकारों थॉमस शेलिंग और रॉबर्ट ऑमैन ने नोबल विजेताओं के रूप में नैश, सेल्टन और हर्सेन्यि का अनुसरण किया। शेलिंग ने गेम थ्योरी विकासशील प्रतिमानों पर कार्य किया, जो विकासवादी गेम थ्योरी के प्रारंभिक उदाहरण थे। ऑमैन ने एक संतुलन कठोरता, सहसंबद्ध संतुलन, प्रस्तुत करके और सामान्य ज्ञान और इसके प्रभावों के अनुमानों का एक गहन औपचारिक विश्लेषण विकसित करके संतुलन विचारधारा में अधिक योगदान दिया.
सन 2007 में, रॉजर मायर्सन को लिओनिड हर्विज़ और एरिक मस्किन के साथ "क्रियाविधि रचना सिद्धांत की नींव रखने के लिये" अर्थशास्त्र में नोबल पुरस्कार से सम्मानित किया गया। मायर्सन के योगदानों में उपयुक्त संतुलन का विचार और एक महत्वपूर्ण स्नातक पाठ्यपुस्तक: Game Theory, Analysis of Conflict (गेम थ्योरी, टकरावों का विश्लेषण), शामिल हैं।(Myerson 1997)
इन्हें भी देखें
[संपादित करें]- मिश्रित गेम थ्योरी
- गेम थ्योरी की शब्दावली
- गेम थ्योरी में खेलों की सूची
- क्वांटम गेम थ्योरी
- आत्म संतुलन की पुष्टि
- चेनस्टोर विरोधाभास
नोट्स
[संपादित करें]- ↑ Ross, Don. "Game Theory". The Stanford Encyclopedia of Philosophy (Spring 2008 Edition). Edward N. Zalta (ed.). Archived from the original on 2 दिसंबर 2013. Retrieved 21 अगस्त 2008.
{{cite web}}
: Check date values in:|archive-date=
(help) - ↑ गेम थ्योरी के प्रयोगात्मक कार्य के कई नाम हैं, प्रायोगिक अर्थशास्त्र, व्यवहारिक अर्थशास्त्र और व्यवहारिक गेम थ्योरी कई हैं। इस कार्यक्षेत्र पर हाल ही में की गई चर्चा के लिए Camerer (2003) देखें.
- ↑ "विकासवादी गेम थ्योरी (स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ़ फिलॉस्फी)". Archived from the original on 11 जुलाई 2010. Retrieved 21 जून 2010.
- ↑ अ आ "जैव परोपकारिता (स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ़ फिलॉस्फी)". Archived from the original on 9 जुलाई 2010. Retrieved 21 जून 2010.
- ↑ Algorithmic Game Theory (PDF). Archived (PDF) from the original on 11 फ़रवरी 2015. Retrieved 21 जून 2010.
- ↑ ई. उलमन मर्गालिट, द एमरजेंस ऑफ़ नॉर्म्स, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, 1977. सी. बिक्चिएरी, द ग्रामर ऑफ़ सोसाइटी: सामाजिक मानदंडों की प्रकृति और गेम थ्योरी की, कैम्ब्रिज यूनिवर्सिटी प्रेस, 2006
- ↑ "सेल्फ रेफ्युटिंग थ्योरिज़ ऑफ़ स्ट्रैटेजिक इंटेरैक्शन: सामान्य ज्ञान का एक विरोधाभास", एर्केनट्निस, 1989: 69-85. समझदारी और समन्वय भी देखें, कैम्ब्रिज यूनिवर्सिटी प्रेस, 1993.
- ↑ द डायनामिक्स ऑफ़ रैशनल डेलिबेरेशन, हार्वर्ड यूनिवर्सिटी प्रेस, 1990.
- ↑ "खेलों में ज्ञान, विश्वास और प्रतितथ्यात्मक तर्क." क्रिस्टीना बिक्चिएरी, रिचर्ड जेफरी और ब्रायन स्क्यर्म्स, के संस्करणों में, द लॉजिक ऑफ़ स्ट्रैटेजी. न्यूयॉर्क: ऑक्सफोर्ड यूनिवर्सिटी प्रेस, 1999.
- ↑ नीतिशास्त्र में गेम थ्योरी के इस्तेमाल की अधिक विस्तृत चर्चा के लिए स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ़ फिलॉस्फी की प्रविष्टि गेम थ्योरी और नीतिशास्त्र Archived 2010-07-10 at the वेबैक मशीन देखें.
- ↑ जेम्स मेडिसन, संयुक्त राज्य अमेरिका की राजनैतिक व्यवस्था के दोष, अप्रैल 1787. लिंक Archived 2010-12-05 at the वेबैक मशीन
- ↑ जैक रकोव, "जेम्स मैडिसन और संविधान", हिस्ट्री नाउ, अंक 13 सितम्बर 2007. लिंक Archived 2009-04-11 at the वेबैक मशीन
- ↑ हालाँकि सामान्य ज्ञान की चर्चा सबसे पहले 1960 के दशक के अंत में दार्शनिक डेविड लेविस ने अपने शोध प्रबंध (और बाद में पुस्तक) कन्वेंशन में की थी, लेकिन 1970 के दशक में रॉबर्ट ऑमन की कृति तक अर्थशास्त्रियों ने इस पर व्यापक रूप से विचार नहीं किया।
सन्दर्भ
[संपादित करें]![]() |
विकिपुस्तक पर Introduction to Game Theory से सम्बन्धित एक किताब है। |
![]() |
विकिविश्वविद्यालय में Game Theory पर पाठ्य सामग्री उपलब्ध है: |
![]() |
game theory को विक्षनरी में देखें जो एक मुक्त शब्दकोश है। |
![]() |
विकिमीडिया कॉमन्स पर खेल सिद्धांत से सम्बन्धित मीडिया है। |
पाठ्यपुस्तिकाएं और साधारण सन्दर्भ
[संपादित करें]- Aumann, Robert J. (1987), "game theory,", The New Palgrave: A Dictionary of Economics, vol. 2, pp. 460–82.
- (2008). द न्यू पलग्रेव डिक्शनरी ऑफ़ इकॉनोमिक्स, द्वितीय संस्करण:
- रॉबर्ट जे. ऑमन की "गेम थ्योरी", काल्पनिक.
- Dutta, Prajit K. (1999), Strategies and games: theory and practice, MIT Press, ISBN 978-0-262-04169-0. पूर्वस्नातक और बिज़नस छात्रों के लिए उपयुक्त.
- Fernandez, L F.; Bierman, H S. (1998), Game theory with economic applications, Addison-Wesley, ISBN 978-0-201-84758-1. उच्च-स्तरीय पूर्वस्नातकों के लिए उपयुक्त.
- Fudenberg, Drew; Tirole, Jean (1991), Game theory, MIT Press, ISBN 978-0-262-06141-4. प्रशंसित सन्दर्भ पाठ, सार्वजनिक वर्णन Archived 2012-10-08 at the वेबैक मशीन.
- Gibbons, Robert D. (1992), Game theory for applied economists, Princeton University Press, ISBN 978-0-691-00395-5. उन्नत पूर्वस्नातकों के लिए उपयुक्त.
-
- Robert Gibbons (2001), A Primer in Game Theory, London: Harvester Wheatsheaf, ISBN 978-0-7450-1159-2 के रूप में यूरोप में प्रकाशित.
- Gintis, Herbert (2000), Game theory evolving: a problem-centered introduction to modeling strategic behavior, Princeton University Press, ISBN 978-0-691-00943-8
- Green, Jerry R.; Mas-Colell, Andreu; Whinston, Michael D. (1995), Microeconomic theory, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, ISBN 978-0-19-507340-9. स्नातक स्तर के लिए उपयुक्त गेम थ्योरी को औपचारिक तरीके से प्रस्तुत करता है।
- edited by Vincent F. Hendricks, Pelle G. Hansen. (2007), Hansen, Pelle G.; Hendricks, Vincent F. (eds.), Game Theory: 5 Questions, New York, London: Automatic Press / VIP, ISBN 9788799101344
{{citation}}
:|author=
has generic name (help). साक्षात्कार के कुछ अंश.
- Isaacs, Rufus (1999), Differential Games: A Mathematical Theory With Applications to Warfare and Pursuit, Control and Optimization, New York: Dover Publications, ISBN 978-0-486-40682-4
- Leyton-Brown, Kevin; Shoham, Yoav (2008), Essentials of Game Theory: A Concise, Multidisciplinary Introduction, San Rafael, CA: Morgan & Claypool Publishers, ISBN 978-1-598-29593-1, archived from the original on 10 अप्रैल 2019, retrieved 14 जून 2020. 88 प्रतियों की एक गणितीय प्रस्तावना; कई विश्वविद्यालयों में मुफ्त ऑनलाइन.
- Miller, James H. (2003), Game theory at work: how to use game theory to outthink and outmaneuver your competition, New York: McGraw-Hill, ISBN 978-0-07-140020-6. साधारण दर्शकों के लिए उपयुक्त.
- Myerson, Roger B. (1991), Game theory: analysis of conflict, Harvard University Press, ISBN 978-0-674-34116-6
- Osborne, Martin J. (2004), An introduction to game theory, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, ISBN 978-0-19-512895-6. पूर्वस्नातक पाठ्यपुस्तिका.
- Osborne, Martin J.; Rubinstein, Ariel (1994), A course in game theory, MIT Press, ISBN 978-0-262-65040-3. स्नातक स्तर की एक आधुनिक प्रस्तावना.
- Poundstone, William (1992), Prisoner's Dilemma: John von Neumann, Game Theory and the Puzzle of the Bomb, Anchor, ISBN 978-0-385-41580-4. गेम थ्योरी और गेम थ्योरिटिशियंस का एक साधारण इतिहास.
- Rasmusen, Eric (2006), Games and Information: An Introduction to Game Theory (4th ed.), Wiley-Blackwell, ISBN 978-1-4051-3666-2, archived from the original on 6 जुलाई 2010, retrieved 21 जून 2010
- Shoham, Yoav; Leyton-Brown, Kevin (2009), Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations, New York: Cambridge University Press, ISBN 978-0-521-89943-7, archived from the original on 1 मई 2011, retrieved 21 जून 2010
{{citation}}
: CS1 maint: bot: original URL status unknown (link). अभिकलनात्मक दृष्टि से एक एक व्यापक सन्दर्भ;.
- Williams, John Davis (1954), The Compleat Strategyst: Being a Primer on the Theory of Games of Strategy (PDF), Santa Monica: RAND Corp., ISBN 9780833042224, archived from the original (PDF) on 14 मई 2011, retrieved 21 जून 2010
{{citation}}
: ISBN / Date incompatibility (help) प्रत्येक के लिए प्रशंसित प्रवेशिका और लोकप्रिय प्रस्तावना, जिसका कभी मुद्रण नहीं हुआ।
ऐतिहासिक दृष्टि से महत्वपूर्ण पुस्तिकाएं
[संपादित करें]- ऑमन, आर.जे. और शेप्ले, एल.एस. (1974), वैल्यूज़ ऑफ़ नॉन-एटॉमिक गेम्स, प्रिंसटन यूनिवर्सिटी प्रेस
- Cournot, A. Augustin (1838), "Recherches sur les principles mathématiques de la théorie des richesses", Libraire des sciences politiques et sociales, Paris: M. Rivière & C.ie
- Edgeworth, Francis Y. (1881), Mathematical Psychics, London: Kegan Paul
- Fisher, Ronald (1930), The Genetical Theory of Natural Selection, Oxford: Clarendon Press
-
- पुनःमुद्रित संस्करण: R.A. Fisher ; edited with a foreword and notes by J.H. Bennett. (1999), The Genetical Theory of Natural Selection: A Complete Variorum Edition, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, ISBN 978-0-19-850440-5
{{citation}}
:|author=
has generic name (help)CS1 maint: multiple names: authors list (link)
- पुनःमुद्रित संस्करण: R.A. Fisher ; edited with a foreword and notes by J.H. Bennett. (1999), The Genetical Theory of Natural Selection: A Complete Variorum Edition, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, ISBN 978-0-19-850440-5
- Luce, R. Duncan; Raiffa, Howard (1957), Games and decisions: introduction and critical survey, New York: Wiley
-
- पुनःमुद्रित संस्करण: R. Duncan Luce ; Howard Raiffa (1989), Games and decisions: introduction and critical survey, New York: Dover Publications, ISBN 978-0-486-65943-5
{{citation}}
: CS1 maint: multiple names: authors list (link)
- पुनःमुद्रित संस्करण: R. Duncan Luce ; Howard Raiffa (1989), Games and decisions: introduction and critical survey, New York: Dover Publications, ISBN 978-0-486-65943-5
- Maynard Smith, John (1982), Evolution and the theory of games, Cambridge University Press, ISBN 978-0-521-28884-2
- Smith, John Maynard; Price, George R. (1973), "The logic of animal conflict", Nature, 246: 15–18, doi:10.1038/246015a0
- Nash, John (1950), "Equilibrium points in n-person games", Proceedings of the National Academy of Sciences of the United States of America, 36 (1): 48–49, doi:10.1073/pnas.36.1.48[मृत कड़ियाँ]
- शेप्ले, एल.एस. (1953), एन-व्यक्ति खेलों का एक मान, इन: कंट्रीब्यूशंस टु द थ्योरी ऑफ़ गेम्स खंड II, एच. डब्ल्यू. कुहन और ए.डब्ल्यू. टकर (संस्करण)
- शेप्ले, एल.एस. (1953), स्टोचास्टिक गेम्स, प्रोसीडिंग्स ऑफ़ नैशनल ऐकडमी ऑफ़ साइंस खंड 39, पीपी. 1095-1100.
- von Neumann, John (1928), "Zur Theorie der Gesellschaftspiele", Mathematische Annalen, 100 (1): 295–320, doi:10.1007/BF01448847, archived from the original ([मृत कड़ियाँ] – Scholar search) on 14 जनवरी 2009, retrieved 21 जून 2010
{{citation}}
: External link in
(help)|format=
- von Neumann, John; Morgenstern, Oskar (1944), Theory of games and economic behavior, Princeton University Press
- Zermelo, Ernst (1913), "Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels", Proceedings of the Fifth International Congress of Mathematicians, 2: 501–4
अन्य मुद्रण सन्दर्भ
[संपादित करें]- Ben David, S.; Borodin, Allan; Karp, Richard; Tardos, G.; Wigderson, A. (1994), "On the Power of Randomization in On-line Algorithms" (PDF), Algorithmica, 11 (1): 2–14, doi:10.1007/BF01294260, archived from the original (PDF) on 22 सितंबर 2009, retrieved 21 जून 2010
- Bicchieri, Cristina (1997), Rationality and Coordination, Cambridge University Press, ISBN 0-521-57444-7
- Camerer, Colin (2003), Behavioral game theory: experiments in strategic interaction, Russesll Sage Foundation, ISBN 978-0-691-09039-9
- Downs, Anthony (1957), An Economic theory of Democracy, New York: Harper
{{citation}}
: Unknown parameter|titlelink=
ignored (help) - Gauthier, David (1986), Morals by agreement, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, ISBN 978-0-19-824992-4
- Grim, Patrick; Kokalis, Trina; Alai-Tafti, Ali; Kilb, Nicholas; St Denis, Paul (2004), "Making meaning happen", Journal of Experimental & Theoretical Artificial Intelligence, 16 (4): 209–243, doi:10.1080/09528130412331294715
- Harper, David; Maynard Smith, John (2003), Animal signals, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, ISBN 978-0-19-852685-8
- Harsanyi, John C. (1974), "An equilibrium point interpretation of stable sets", Management Science, 20: 1472–1495, doi:10.1287/mnsc.20.11.1472
- Levy, Gilat; Razin, Ronny (2003), "It Takes Two: An Explanation of the Democratic Peace", Working Paper, archived from the original on 22 मई 2011, retrieved 21 जून 2010
- Lewis, David (1969), Convention: A Philosophical Study, ISBN 978-0-631-23257-5 (2002 संस्करण)
- McDonald, John (1996), Strategy in Poker, Business & War, W. W. Norton, ISBN 0-393-31457-X. ए लेमैन्स इंट्रोडक्शन.
- Quine, W.v.O (1967), "Truth by Convention", Philosophica Essays for A.N. Whitehead, Russel and Russel Publishers, ISBN 978-0-8462-0970-6
- Quine, W.v.O (1960), "Carnap and Logical Truth", Synthese, 12 (4): 350–374, doi:10.1007/BF00485423
- Siegfried, Tom (2006), A Beautiful Math, Joseph Henry Press, ISBN 0-309-10192-1
- Skyrms, Brian (1990), The Dynamics of Rational Deliberation, Harvard University Press, ISBN 0-674-21885-X
- Skyrms, Brian (1996), Evolution of the social contract, Cambridge University Press, ISBN 978-0-521-55583-8
- Skyrms, Brian (2004), The stag hunt and the evolution of social structure, Cambridge University Press, ISBN 978-0-521-53392-8
- Sober, Elliott; Wilson, David Alec (1999), Unto others: the evolution and psychology of unselfish behavior, Harvard University Press, ISBN 978-0-674-93047-6
- Thrall, Robert M.; Lucas, William F. (1963), "-person games in partition function form", Naval Research Logistics Quarterly, 10 (4): 281–298, doi:10.1002/nav.3800100126
वेबसाइट
[संपादित करें]- पॉल वॉकर: गेम थ्योरी का इतिहास पृष्ठ.
- डेविड लेविन: गेम थ्योरी.कागज, व्याख्यान नोट्स और बहुत अधिक सामग्री.
- एल्विन रोथ: गेम थ्योरी और प्रायोगिक अर्थशास्त्र पृष्ठ - वेब पर गेम थ्योरी की जानकारी के लिए कड़ियों की व्यापक सूची
- एडम कलाई: गेम थ्योरी और कंप्यूटर साइंस - गेम थ्योरी और कंप्यूटर साइंस पर व्याख्यान के नोट्स
- माइक शोर: गेम थ्योरी .नेट - व्याख्यान नोट्स, इंटरैक्टिव चित्र और अन्य जानकारी.
- जिम रैटलीफ की गेम थ्योरी का स्नातक पाठ्यक्रम (व्याख्यान नोट्स).
- द्विपक्षीय बातचीत (सौदेबाजी) के लिए वैलेन्टिन रोबू का सॉफ्टवेयर टूल
- डॉन रॉस: स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ़ फिलॉस्फी में गेम थ्योरी की समीक्षा.
- ब्रूनो वर्बीक और क्रिस्टोफर मॉरिस: गेम थ्योरी और नीतिशास्त्र
- क्रिस यिऊ की गेम थ्योरी लाउंज
- एल्मर जी. विएंस: गेम थ्योरी - परिचय, किए गए उदाहरण, दो व्यक्ति शून्य राशि खेलों का ऑनलाइन खेल.
- मारेक एम. कमिन्सकी: गेम थ्योरी और राजनीति - गेम थ्योरी और राजनीति विज्ञान के पाठ्यक्रम और व्याख्यान नोट्स.
- गेम थ्योरी और सामाजिक बातचीत पर वेब साइट
- केस्टन ग्रीन का संघर्ष पूर्वानुमान - गेम थ्योरी और अन्य तरीकों के पूर्वानुमान की सटीकता पर प्रमाण के लिए कागज़ात देखें.
- मैककेल्वे, रिचर्ड डी., मैकलेंनन, एंड्रयू एम. और टूरोसी, थियोडोर एल. (2007) गैम्बिट: सॉफ्टवेयर टूल्स फॉर गेम थ्योरी .
- बेन्जमिन पोलक: येल पर गेम थ्योरी का मुक्त पाठ्यक्रम पाठ्यक्रम के वीडियो
- Pages using the JsonConfig extension
- CS1 errors: dates
- लेख जिनमें अप्रैल 2009 से असत्यापित तथ्य हैं
- CS1 errors: generic name
- CS1 maint: bot: original URL status unknown
- CS1 errors: ISBN date
- CS1 maint: multiple names: authors list
- लेख जिनमें मार्च 2009 से मृत कड़ियाँ हैं
- CS1 errors: external links
- CS1 errors: unsupported parameter
- खेल सिद्धांत
- अर्थशास्त्र