ब्रह्मगुप्त का सूत्र

मुक्त ज्ञानकोश विकिपीडिया से
Jump to navigation Jump to search

ब्रह्मगुप्त का सूत्र किसी चक्रीय चतुर्भुज का क्षेत्रफल निकालने का सूत्र है यदि उसकी चारों भुजाएँ ज्ञात हों। उस चतुर्भुज को चक्रीय चतुर्भुज कहते हैं जिसके चारों शीर्षों से होकर कोई वृत्त खींचा जा सके।I

सूत्र[संपादित करें]

a, b, c, d भुजाओं वाला चक्रीय चतुर्भुज

यदि किसी चक्रीय चतुर्भुज की भुजाएँ a, b, c, तथा d हों तो उसका क्षेत्रफल

जहाँ s उस चक्रीय चतुर्भुज का अर्धपरिमाप है, अर्थात्

ज्ञातव्य है कि हीरोन का सूत्र, ब्रह्मगुप्त के सूत्र की एक विशेष स्थिति है जब d=0. क्योंकि एक भुजा के शून्य हो जाने पर चतुर्भुज, त्रिभुज बन जाता है और प्रत्येक त्रिभुज 'चक्रीय' है (सभी त्रिभुजों के तीनों शीर्षों से होकर वृत्त खींचा जा सकता है।)।

उपर्युक्त नियम ब्राह्मस्फुटसिद्धान्त के गणिताध्याय के क्षेत्रव्यवहार के श्लोक १२.२१ में वर्णित है-

स्थूलफलम् त्रिचतुर्भुज-बाहु-प्रतिबाहु-योग-दल-घातस्।
भुज-योग-अर्ध-चतुष्टय-भुज-ऊन-घातात् पदम् सूक्ष्मम् ॥
(त्रिचतुर्भुज (चक्रीय चतुर्भुज) का स्थूल क्षेत्रफल (appx। area) उसकी आमने-सामने की भुजाओं के योग के आधे के गुणनफल के बराबर होता है। तथा
सूक्ष्म क्षेत्रफल (exact area) भुजाओं के योग के आधे में से भुजाओं की लम्बाई क्रमशः घटाकर और उनका गुणा करके वर्गमूल लेने से प्राप्त होता है। )

विशेष स्थितियाँ[संपादित करें]

  • वर्ग के लिए : अतः
  • आयत के लिए: अतः

उपपत्ति[संपादित करें]

Brahmaguptas formula.png

माना चक्रीय चतुर्भुज ABCD की भुजाएँ p, q, r, s हैं। अतः ABCD का क्षेत्रफल त्रिभुज ADB तथा BCD के क्षेत्रफल के योग के बराबर होगा।

चूंकि ABCD चक्रीय चतुर्भुज है, अतः

तथा

-- (१)

त्रिभुज ADB अत्था BDC में कोज्या सूत्र लगाने पर

चूँकि : अतः cos C = -cos A ; अतः

यह मान समीकरण (१) में रखने पर,

रखने पर

इतिसिद्धम्

सामान्यीकरण[संपादित करें]

यदि दिया हुआ चतुर्भुज चक्रीय चतुर्भुज न हो तो उसके क्षेत्रफल के लिये व्यंजक दिया जा सकता है।

माना किसी चतुर्भुज की भुजाएँ a, b, c, हैं तथा उसके आमने-सामने के कोणों का योग 2θ हो तो

यह ब्रेटश्नीडर का सूत्र (Bretschneider's formula) कहलाता है।

सन्दर्भ[संपादित करें]

इन्हें भी देखें[संपादित करें]

बाहरी कड़ियाँ[संपादित करें]