वृत्त

मुक्त ज्ञानकोश विकिपीडिया से
Jump to navigation Jump to search
वृत्त
वृत्त.svg
तल द्विविमीय
अर्थ केंद्र से समान दूर होने वाले बिंदुओं का समुदाय
व्यास केंद्र से होकर जाने वाली जीवा
त्रिज्या अर्द्धव्यास
अंग्रेजी में circle
परिधि परिधि = π x व्यास

किसी एक निश्चित बिंदु से समान दूरी पर स्थित बिंदुओं का बिन्दुपथ वृत्त कहलाता है। यह निश्चित बिंदु, वृत्त का केंद्र कहलाता है, केंद्र और वृत्त की परिधि के किसी भी बिन्दु के बीच की दूरी वृत्त की त्रिज्या कहलाती है।

वृत्त एक प्रकार का शांकव होता है जिसकी उत्केंद्रता (Eccentricity) शून्य होती है अर्थात नियता समतल में अनंत पर स्थित होती है। एक वृत्त को एक विशेष प्रकार के दीर्घवृत्त के रूप में भी परिभाषित किया जा सकता है जिसमें दोनों नाभियाँ संपाती होती हैं और उत्केन्द्रता 0 होती है।

शब्दावली[संपादित करें]

चाप(Arc): वृत्त की परिधि का कोई भी भाग।

केंद्र(Centre): वृत्त पर स्थित सभी बिंदुओं से समदूरस्थ बिंदु।

जीवा(Chord): एक रेखाखंड, जो वृत्त पर स्थित किन्हीं दो बिन्दुओं को मिलने पर बनता है। एक जीवा वृत्त को दो वृत्तखंडों में विभाजित करती है।

परिधि(Circumfrence): वृत्त के चारों ओर की वक्र लंबाई।

व्यास(Diameter): एक रेखाखंड जिसके अंतबिन्दु वृत्त पर स्थित होते हैं और जो केंद्र से गुजरता है या वृत्त के किन्हीं दो बिंदुओं के बीच की अधिकतम दूरी है। यह वृत्त की सबसे बड़ी जीवा होती है और यह त्रिज्या की दोगुनी होती है।

डिस्क(Disc): एक वृत्त से घिरा अन्तः समतलीय क्षेत्र।

त्रिज्या(Radius): वृत्त के केंद्र से वृत्त की परिधि के किसी भी बिंदु तक का एक रेखाखंड, जो व्यास का आधा होता है।

त्रिज्यखंड(Sector): किन्हीं दो त्रिज्याओं के बीच एक चाप से घिरा क्षेत्र।

वृत्तखण्ड(Segment): केंद्ररहित एक क्षेत्र जो वृत्त की एक जीवा और एक चाप से घिरा होता है। एक जीवा वृत्त को दो वृत्तखंडों में विभाजित करती है।

छेदक रेखा(Secant): एक विस्तारित जीवा, जो वृत्त के समतलीय होती है तथा वृत्त को दो बिन्दुओं पर प्रतिच्छेदित करती है।

अर्धवृत्त(Semicircle): वृत्त के व्यास तथा व्यास के अंतबिन्दुओं से बने चाप के मध्य का क्षेत्र अर्धवृत्त होता है। अर्धवृत्त का क्षेत्रफल, वृत्त के सम्पूर्ण क्षेत्रफल का आधा होता है।

स्पर्शी(Tangent): वृत्त  के समतलीय सीधी रेखा जो एक बिंदु पर वृत्त को स्पर्श करती है।

ज्या (Chord), स्पर्श रेखा (tangent), छेदन रेखा (secant), व्यासार्थ (radius) ऑर व्यास (diameter)

यूक्लिड की परिभाषा[संपादित करें]

यूक्लिड के अनुसार,

'एक वृत्त एक रेखा से घिरा हुआ एकविमीय समतल होता है और किसी निश्चित बिंदु से लेकर उस बंधरेखा तक खींची गई सभी रेखाएं बराबर होती हैं। इस बंधरेखा को परिधि और इस निश्चित बिंदु को वृत्त का केंद्र कहते हैं।'

छेदक रेखा[संपादित करें]

वृत्त की परिधि को दो बिन्दुओं पर प्रतिच्छेद करने वाली रेखा को उस वृत्त की छेदक रेखा कहते हैं।

स्पर्श रेखा[संपादित करें]

वृत्त की परिधि को किसी एक बिन्दु पर स्पर्श करने वाली रेखा को उस वृत्त की स्पर्श रेखा (Tangent) कहते हैं।

स्पर्श रेखा के गुण[संपादित करें]

(a) वृत्त के एक बिन्दु पर एक और केवल एक स्पर्श रेखा होती है।

(b) किसी वृत्त की स्पर्श रेखा छेदक रेखा की एक विशिष्ट दशा है जब संगत जीवा के दोनों सिरे संपाती हो जाएँ।

(c) स्पर्श रेखा और वृत्त के कॉमन प्वांट (उभनिष्ठ बिन्दु) को स्पर्श बिन्दु (point of contact) कहते हैं। तथा स्पर्श रेखा को वृत के उभयनिष्ठ बिन्दु पर स्पर्श करना कहते हैं।

(d) वृत्त के अंदर स्थित किसी बिन्दु से जाने वाली वृत्त पर कोई स्पर्श रेखा नहीं है।

(e) वृत्त पर स्थित किसी बिन्दु से वृत्त पर एक और केवल एक स्पर्श रेखा है।

(f) वृत्त के बाहर स्थित किसी बिन्दु से जाने वाली वृत्त पर दो और केवल दो स्पर्श रेखाएँ हैं।

(g) बाह्य बिन्दु P से वृत के स्पर्श बिन्दु तक स्पर्श रेखा खंड की लम्बाई को बिन्दु P से वृत्त पर स्पर्श रेखा की लम्बाई कहते हैं।

परिणाम[संपादित करें]

परिधि की लंबाई[1]

वृत्त की परिधि तथा उसके व्यास का अनुपात π (पाई) होता है, जिसका मान लगभग 3.141592654 के बराबर है। इस प्रकार परिधि की लंबाई C, त्रिज्या r और व्यास d से निम्न प्रकार संबंधित है:

C = 2πr = πd

क्षेत्रफल:

आर्किमिडीज ने वृत्त के क्षेत्रफल मापन में सिद्ध किया कि एक वृत्त से घिरा क्षेत्र एक त्रिभुज के क्षेत्रफल के बराबर है, जिसका आधार वृत्त की परिधि की लंबाई के बराबर और इसकी ऊंचाई वृत्त की त्रिज्या के बराबर होती है। π तथा त्रिज्या के वर्ग का गुणनफल, वृत्त के क्षेत्रफल के बराबर होता है।

Area enclosed by a circle = π × area of the shaded square

क्षेत्रफल = πr2

यदि वृत्त का व्यास d हो तब,

क्षेत्रफल = (πd2)/4 = 0.7854d2

यह वर्ग के क्षेत्रफल के लगभग 79% के बराबर है जिसकी भुजा की लंबाई d है।

समीकरण:

एक x-y कार्तीय निर्देशांक प्रणाली में, केंद्र (a,b) और त्रिज्या r के वृत्त का समीकरण

(x-a)2 + (y-b)2 = r2

यदि वृत्त का केंद्र मूलबिंदु (0,0) तथा त्रिज्या r हो तब वृत्त का समीकरण:

x2 + y2 = r2

प्रमुख गुण[संपादित करें]

  1. वृत्त के व्यास द्वारा परिधि के किसी भी बिंदु पर अंतरित कोण समकोण (90 अंश) होता है।
  2. जीवा पर केन्द्र से डाला गया लम्ब उस जीवा का समद्विभाजक भी होता है।
  3. चक्रीय चतुर्भुज के सम्मुख कोणों का योग 180 अंश होता है।
  4. किसी बाह्य बिदु से वृत्त पर दो स्पर्शरेखाएँ खिंची जा सकतीं हैं। ये दोनों स्पर्शरेखाएँ समान लम्बाई की होती हैं।

वृत्त की जीवा के गुण[संपादित करें]

  • केंद्र से होकर जाने वाली जीवा उस वृत्त की सबसे बड़ी जीवा होती है। इसे 'व्यास' (Diameter) कहते हैं।
  • किसी वृत्त का व्यास उस वृत्त को दो सामान भागों में विभक्त करता है।
  • व्यास, त्रिज्या का दोगुना होता है। व्यास = 2 (त्रिज्या)
  • किसी वृत्त में केंद्र से समान दूरी पर खींची गयी जीवाओं की लंबाई सामान होती है।
  • किसी वृत्त में सामान लंबाई की जीवाएं केंद्र से सामान दूरी पर होती हैं।
  1. 10th maths