सामग्री पर जाएँ

क्रम-विकास से परिचय

मुक्त ज्ञानकोश विकिपीडिया से
"कशेरुकी जन्तुओं का जीवाश्मविज्ञानी वंश वृक्ष", एर्न्स्ट हेक्केल की १९१० में प्रकाशित पुस्तक "मानव का क्रम-विकास" (अंग्रेज़ी: The Evolution of Man) के पाँचवे संस्करण से लिया गया है। जातियों के क्रम-वैकासिक इतिहास की तुलना एक वृक्ष से की गयी है, जिसमें एक तने से अनेक शाखाएं निकलती हैं। हालाँकि हेक्केल का यह वृक्ष थोड़ा पुराना और अप्रचलित हो गया है, पर ये उन मुख्य सिद्धांतों को स्पष्ट कर देता है जिन्हें ज्यादा जटिल आधुनिक रेखा-चित्र धुंधला कर देते हैं।

क्रम-विकास किसी जैविक आबादी के आनुवंशिक लक्षणों के पीढ़ियों के साथ परिवर्तन को कहते हैं। जैविक आबादियों में जैनेटिक परिवर्तन के कारण अवलोकन योग्य लक्षणों में परिवर्तन होता है। जैसे-जैसे जैनेटिक विविधता पीढ़ियों के साथ बदलती है, प्राकृतिक वरण से वो लक्षण ज्यादा सामान्य हो जाते हैं जो उत्तरजीवन और प्रजनन में ज्यादा सफलता प्रदान करते हैं।

पृथ्वी की उम्र लगभग ४.५४ अरब वर्ष है।[1][2][3] जीवन के सबसे पुराने निर्विवादित सबूत ३.५ अरब वर्ष पुराने हैं।[4][5][6] ये सबूत वेस्टर्न ऑस्ट्रेलिया में ३.५ वर्ष पुराने बलुआ पत्थर में मिले माइक्रोबियल चटाई के जीवाश्म हैं।[7][8][9] जीवन के इस से पुराने, पर विवादित सबूत ये हैं: १) ग्रीनलैंड में मिला ३.७ अरब वर्ष पुराना ग्रेफाइट, जो की एक बायोजेनिक पदार्थ है[10] और २) २०१५ में पश्चिमी ऑस्ट्रेलिया में ४.१ अरब वर्ष पुराने पत्थरों में मिले "बायोटिक जीवन के अवशेष"।[11][12]

क्रम-विकास जीवन की उत्पत्ति को समझाने की कोशिश नहीं करता है (इसे अबायोजेनेसिस समझाता है)। पर क्रम-विकास यह समझाता है कि प्राचीन सरल जीवन से आज का जटिल जीवन कैसे विकसित हुआ है।[13] आज की सभी जातियों के बीच समानता देख कर यह कहा जा सकता है कि पृथ्वी के सभी जीवों का एक साझा पूर्वज है।[14] इसे अंतिम सार्वजानिक पूर्वज कहते हैं। आज की सभी जातियाँ क्रम-विकास की प्रक्रिया के द्वारा इस से उत्पन्न हुई हैं।[14][15] सभी शख़्सों के पास जीन्स के रूप में आनुवांशिक पदार्थ होता है। सभी शख़्स इसे अपने माता-पिता से ग्रहण करते हैं और अपनी संतान को देते हैं। संतानों के जीन्स में थोड़ी भिन्नता होती है। इसका कारण उत्परिवर्तन (यादृच्छिक परिवर्तनों के माध्यम से नए जीन्स का प्रतिस्थापन) और लैंगिक जनन के दौरान मौजूदा जीन्स में फेरबदल है।[16][17] इसके कारण संताने माता-पिता और एक दूसरे से थोड़ी भिन्न होती हैं। अगर वो भिन्नताएँ उपयोगी होती हैं तो संतान के जीवित रहने और प्रजनन करने की संभावना ज्यादा होती है। इसके कारण अगली पीढ़ी के विभिन्न शख्सों के जीवित रहने और प्रजनन करने की संभावना समान नहीं होती है। फलस्वरूप जो लक्षण जीवों को अपनी परिस्थितियों के ज्यादा अनुकूलित बनाते हैं, अगली पीढ़ियों में वो ज्यादा सामान्य हो जाते हैं।[16][17] ये भिन्नताएँ धीरे-धीरे बढ़ती रहती हैं। आज देखी जाने वाली जीव विविधता के लिए यही प्रक्रिया जिम्मेदार है।

अधिकांश जैनेटिक उत्परिवर्तन शख़्सों को न कोई सहायता प्रदान करते हैं, न उनकी दिखावट को बदलते हैं और न ही उन्हें कोई हानि पहुँचाते हैं। जैनेटिक ड्रिफ्ट के माध्यम से ये निष्पक्ष जैनेटिक उत्परिवर्तन केवल संयोग से आबादियों में स्थापित हो जाते हैं और बहुत पीढ़ियों तक जीवित रहते हैं। इसके विपरीत, प्राकृतिक वरण एक यादृच्छिक प्रक्रिया नहीं है क्योंकि यह उन लक्षणों को बचाती है जो जीवित रहने और प्रजनन करने के लिए जरुरी हैं।[18] प्राकृतिक वरण और जैनेटिक ड्रिफ्ट जीवन के नित्य और गतिशील अंग हैं। अरबों वर्षों में इन प्रक्रियाओं ने जीवन के वंश वृक्ष की शाखाओं की रचना की है।[19]

क्रम-विकास की आधुनिक सोच १८५९ में प्रकाशित चार्ल्स डार्विन की किताब जीवजातियों का उद्भव से शुरू हुई। इसके साथ ग्रेगर मेंडल द्वारा पादपों पर किये गए अध्ययन ने अनुवांशिकी को समझने में मदद की।[20] जीवाश्मों की खोज, जनसंख्या आनुवांशिकी में प्रगति और वैज्ञानिक अनुसंधान के वैश्विक नैटवर्क ने क्रम-विकास की क्रियाविधि की और अधिक विस्तृत जानकारी प्रदान की है। वैज्ञानिकों को अब नयी जातियों के उद्गम (प्रजातीकरण) की ज्यादा समझ है और उन्होंने अब प्रजातीकरण की प्रक्रिया का अवलोकन प्रयोगशाला और प्रकृति में कर लिया है। क्रम-विकास वह मूल वैज्ञानिक सिद्धांत है जिसे जीववैज्ञानिक जीवन को समझने के लिए प्रयोग करते हैं। यह कई विषयों में प्रयोग होता है जैसे आयुर्विज्ञान, मानस शास्त्र, जैव संरक्षण, मानवशास्त्र, फॉरेंसिक विज्ञान, कृषि और अन्य सामाजिक-सांस्कृतिक विषय।

सरल सिंहावलोकन

[संपादित करें]

क्रम-विकास के मुख्य विचार संक्षेप में निम्नलिखित हैं:

  • जीव प्रजनन करते हैं इसलिए उनकी बहुसंख्यक हो जाने की प्रवृत्ति होती है।
  • शिकारी और प्रतिस्पर्धा उनके उत्तरजीवन में बाधा डालते हैं।
  • हर संतान अपने अपने माता-पिता से छोटे, यादृच्छिक रूप में भिन्न होती है।
  • अगर ये भिन्नताएँ लाभदायक होती हैं तो संतान के जीवित रहने और प्रजनन करने की संभावना ज्यादा होगी।
  • इस से यह संभावना बढ़ती है कि लाभदायक भिन्नताएँ अगली पीढ़ी के ज्यादा शख़्सों में होंगी और हानिकारक भिन्नताएँ कम शख़्सों में।
  • ये भिन्नताएँ पीढ़ी दर पीढ़ी जमा होती रहती हैं जिसके कारण आबादी में परिवर्तन हो जाता है।
  • समय के साथ आबादियाँ विभिन्न जातियों में विभाजित हो सकती हैं।
  • ये प्रक्रियाएँ, जिन्हें सम्मिलित रूप से क्रम-विकास कहा जाता है, आज के जीवन की विविधता के लिए जिम्मेदार हैं।

प्राकृतिक वरण

[संपादित करें]
चार्ल्स डार्विन ने प्राकृतिक वरण द्वारा क्रम-विकास का सिद्धांत प्रस्तावित किया।
डार्विन ने देखा कि परागण सुनिश्चित करने के लिए आर्किडों में बहुत सारे जटिल अनुकूलन होते हैं, जोकि पुष्पों के मूलभूत भागों से विकसित हुए होते हैं।

१९ वीं शताब्दी में प्राकृतिक इतिहास के संग्रहालय काफ़ी लोकप्रिय थे। इस दौरान यूरोपीय खोजयात्राएँ और नौसेना के अभियान बड़े संग्रहालयों के प्राकृतिक वैज्ञानिकों और संग्रहाध्यक्षों को साथ ले जाते थे। चार्ल्स डार्विन एक ग्रेजुएट थे जो प्राकृतिक इतिहास विज्ञान के विषय में शिक्षित और प्रशिक्षित थे। उनके जैसे प्राकृतिक इतिहासकार संग्रहालयों के लिए नमूनों को इकट्ठा करते थे, उनकी सूचि बनाते थे, उनका वर्णन और अध्ययन करते थे। डार्विन एचएमएस बीगल नामक जहाज पर प्राकृतिक वैज्ञानिक का काम कर रहे थे। उन्हें दुनिया भर की पाँच वर्ष की अनुसंधान यात्रा का काम सौंपा गया था। अपनी यात्राओं के दौरान उन्होंने बहुत से जीवों के नमूने एकत्रित किए और उनका निरिक्षण किया। उन्हें दक्षिणी अमरीका के तटों और नज़दीकी गैलापागोस द्वीपसमूह के विविध जीवों में ख़ास दिलचस्पी थी।[21][22]

डार्विन को दूर-दूर के स्थानों से नमूने एकत्रित करने और उनका अध्ययन करने से व्यापक अनुभव प्राप्त हुआ। अपने इन अध्ययनों से उन्होंने यह विचार पेश किया कि हर जाति अपने जैसे लक्षणों वाले पूर्वजों से विकसित हुई है। १९३८ में उन्होंने समझाया कि यह एक प्राकृतिक प्रक्रिया से कैसे हो सकता है। उन्होंने इस प्राकृतिक प्रक्रिया को प्राकृतिक वरण का नाम दिया।[23]

किसी आबादी का आकार उसके परिवेश में मौजूद संसाधनों की मात्रा पर निर्भर करता है। वर्षों तक आबादी का आकार स्थिर बना रहने के लिए आबादी के आकार और उपलब्ध संसाधनों में संतुलन बना रहना जरुरी है। परिवेश जितनी संतानों को आश्रय दे सकता है, उस से अधिक पैदा होती हैं। इसके कारण किसी भी पीढ़ी के सभी शख़्स जीवित नहीं रह सकते हैं। इसलिए उत्तरजीवन के लिए जरुरी संसाधनों के लिए हमेशा एक प्रत्योगी संघर्ष बना रहता है। इस से डार्विन को एहसास हुआ की उत्तरजीवन केवल संयोग पर निर्भर नहीं करता है। उन्हें एहसास हुआ कि उत्तरजीवन शख़्सों की भिन्नताओं, या "लक्षणों", पर निर्भर करता है। कुछ लक्षण शख़्सों की उत्तरजीविता में सहायता करते हैं और कुछ उसमें बाधा डालते हैं। परिवेश के ज्यादा अनुकूलित शख़्स अपने कम अनुकूलित प्रतिद्वंद्वियों की तुलना में अगली पीढ़ी को ज्यादा संतानें देते हैं। जो लक्षण उत्तरजीवन और प्रजनन में बाधा डालते हैं वो कुछ पीढ़ियों के बाद लुप्त हो जाते हैं। जो लक्षण उत्तरजीवन और प्रजनन में सहायता करते हैं वो पीढ़ी दर पीढ़ी जमा होते रहते हैं। इस प्रकार शख़्सों की उत्तरजीवन और प्रजनन की असमान क्षमता के कारण धीरे-धीरे आबादियों में परिवर्तन हो जाता है।[24]

प्राणियों और पादपों में भिन्नताओं के अवलोकन प्राकृतिक वरण के सिद्धांत की बुनियाद बने। डार्विन ने देखा कि आर्किडों और कीटों में एक ख़ास साझेदारी होती है जो पादपों के परागण में मदद करती है। उन्होंने देखा कि आर्किडों में ऐसी बहुत सारी संरचनाएँ होती हैं जो कीटों को आकर्षित करती हैं, ताकि पुष्पों का पराग उनके शरीर में चिपक जाए। इस प्रकार से किट एक नर आर्किड से एक मादा आर्किड तक पराग ढोते हैं। आर्किडों की जटिल दिखावट के बावजूद, ये विशेषीकृत भाग उन्हीं मूलभूत संरचनाओं से बनते हैं जिनसे अन्य पुष्प बनते हैं। अपनी पुस्तक आर्किडों का निषेचन (अंग्रेज़ी: Fertilisation of Orchids) में डार्विन प्रस्तावित करते हैं कि आर्किड पुष्प पहले से मौजूद पुष्प भागों से प्राकृतिक वरण की प्रक्रिया के द्वारा परिवेश के ज्यादा अनुकूलित बने हैं।[25]

डार्विन अभी अपने विचारों पर अनुसंधान और प्रयोग कर ही थे कि उन्हें एल्फ्रेड रसल वैलेस (अंग्रेज़ी: Alfred Russel Wallace) से एक चिट्ठी मिली। इस चिट्ठी में वैलेस ने डार्विन के सिद्धांत के जैसे एक सिद्धांत का वर्णन किया था। इसके कारण दोनों ने इन सिद्धांतों का संयुक्त प्रकाशन किया। वैलेस और डार्विन दोनों जीवन के इतिहास को एक वंश वृक्ष की तरह देखते थे, जिसमें शाखाओं की नोक आज की जातियों को दर्शाती है और शाखाओं के विभाजित होने की जगह एक साझे पूर्वज को। डार्विन ने कहा कि जीवित चीज़ें रिश्तेदार हैं। इसका मतलब था कि सारा जीवन थोड़े से सरल पूर्वजों से उत्पन्न हुआ है। और यह भी संभावना थी कि सभी जीवों का एक ही पूर्वज हो।[26]

डार्विन ने प्राकृतिक वरण द्वारा क्रम-विकास के अपने सिद्धांत को १८५९ में अपनी पुस्तक जीवजातियों का उद्भव में प्रकाशित किया। उनके सिद्धांत का मतलब है कि मानव समेत सभी जीव अविराम प्राकृतिक प्रक्रियाओं की उपज हैं। इसके कारण कुछ धार्मिक गुटों ने क्रम-विकास के सिद्धांत पर आपत्ति उठाई है। इसके विपरीत वैज्ञानिक समुदाय में ९९ प्रतिशत से ज्यादा लोग इस सिद्धांत का समर्थन करते हैं।[27]

अक्सर प्राकृतिक वरण को स्वस्थतम की उत्तरजीविता का पर्याय समझा जाता है, पर ये अभिव्यक्ति १८६४ में प्रकाशित हरबर्ट स्पेंसर की पुस्तक जीवविज्ञान के सिद्धांत (अंग्रेज़ी: Principles of Biology) से जन्मी है, जो डार्विन की किताब के पांच वर्ष बाद प्रकाशित हुई थी। स्वस्थतम की उत्तरजीविता प्राकृतिक वरण की प्रक्रिया को गलत ढंग से समझाती है क्योंकि प्राकृतिक वरण केवल उत्तरजीवन के बारे में नहीं है और हमेशा स्वस्थतम ही नहीं जीवित रहता है।[28]

भिन्नता का कारण

[संपादित करें]

डार्विन के प्राकृतिक वरण के सिद्धांत ने क्रम-विकास के आधुनिक सिद्धांत की नींव रखी। उनके अनुसंधानों और अवलोकनों ने दिखाया कि एक आबादी के शख़्स एक दूसरे से भिन्न होते हैं, इन भिन्नताओं में से कुछ भिन्नताएँ माता-पिता से मिलती हैं और प्राकृतिक वरण इन भिन्नताओं को चुनता और त्यागता है। पर वे इन भिन्नताओं का कारण नहीं बता सके। अपने से पहले के जीव वैज्ञानिकों की तरह वे समझते रहे कि आनुवांशिक लक्षण उपयोग या अनुपयोग का कारण थे, और अपने जीवन काल में ग्रहण किए गए लक्षण अपने बच्चों को दिए जा सकते हैं। उन्होंने इसके उदाहरण खोजने की कोशिश की। उन्होंने सोचा कि शुतुरमुर्ग जैसे बड़े उड़ान रहित पक्षियों की टांगें ज्यादा चलने के कारण पीढ़ी दर पढ़ी शक्तिशाली होती रही होंगी, और उनके पंख कम उड़ने के कारण पीढ़ी दर पीढ़ी कमज़ोर होते रहे होंगे।[29] इस गलतफ़हमी को "अधिग्रहित लक्षणों की आनुवांशिकता" (अंग्रेज़ी: inheritance of acquired characters) कहा जाता था जो कि जीन बैप्टिस्ट लैमार्क द्वारा १८०९ में प्रस्तावित सिद्धांत "जातियों का परिवर्तन" (अंग्रेज़ी: transmutation of species) का भाग थी। १९ वीं शताब्दी के अंत में यह सिद्धांत को लैमार्कवाद कहलाता था। डार्विन ने जीवन काल में ग्रहण किए गए लक्षणों की आनुवांशिकता समझाने के लिए पैनजेनेसिस (अंग्रेज़ी: Pangenesis) नाम का एक असफल सिद्धांत प्रस्तावित किया। १८८० के दशक में ऑगस्ट वीस्मान (अंग्रेज़ी: August Weismann) के प्रयोगों ने दिखाया कि अपने जीवन काल में ग्रहण किए गए लक्षण बच्चों को नहीं दिए जा सकते हैं। इसके कारण कुछ समय में लैमार्कवाद को त्याग दिया गया।[30]

नए लक्षण माता-पिता द्वारा संतानों को कैसे दिए जाते हैं, इसका उत्तर आनुवांशिकी पर ग्रेगर मेंडल के अग्रणी कार्य से मिला। मटर के पौधों की कई पीढ़ियों पर किए गए उनके प्रयोगों ने साबित किया कि माता और पिता में सेक्स कोशिकाओं के गठन के समय आनुवांशिक जानकारी विभाजित हो जाती है और निषेचन के समय माता और पिता से मिली जानकारी यादृच्छिक ढंग से जुड़ जाती है। इसकी तुलना ताश के पत्तों से की जा सकती है जहाँ किसी जीव को आधे पत्ते माता से यादृच्छिक ढंग से मिलते हैं और बाकि आधे पिता से यादृच्छिक ढंग से। मेंडल ने इस जानकारी को फैक्टर्स (अंग्रेज़ी: factors) कहा, पर बाद में जीन (अंग्रेज़ी: genes) नाम ज्यादा प्रचलित हो गया। जीन आनुवांशिकी की मूल इकाई है। इनमें वह जानकारी होती है जो जीव के शारीरिक विकास और व्यवहार को निर्देशित करती है।

जीन डीएनए से बनते हैं। डीएनए एक लंबा अणु है जो न्युक्लियोटाइड (अंग्रेज़ी: nucleotide) कहलाए जाने वाले छोटे अणुओं से बनता है। आनुवांशिक जानकारी डीएनए में न्युक्लियोटाइडों की शृंखला के रूप में संग्रहित होती है। डीएनए की तुलना एक लेख से की जा सकती है जिसमें न्युक्लियोटाइड वर्णों का काम करते हैं। जिस प्रकार वर्णों की शृंखला से एक बना लेख जानकारी को संग्रहित करता है, उसी प्रकार न्युक्लियोटाइडों की शृंखला से बना डीएनए आनुवांशिक जानकारी को संग्रहित करता है। जीन डीएनए की वर्णमाला के वर्णों (न्युक्लियोटाइड) से बने निर्देश होते हैं। सभी जीन मिलकर एक "निर्देश पुस्तिका" के जैसे होते हैं जिसमें एक जीव को बनाने और काम कराने की सारी जानकारी होती है। डीएनए में लिखे गए इन निर्देशों का उत्परिवर्तन के कारण बदलना आबादी की जैनेटिक भिन्नता को बढ़ता है। डीएनए (और अतः जीन) केशिकाओं के अन्दर क्रोमोज़ोमों (अंग्रेज़ी: chromosomes) में होता है। निषेचन के समय माता-पिता से मिले क्रोमोजोमों के यादृच्छिक मिश्रण से संतान को जीनों का अद्वितीय संयोजन मिलता है।[31] लैंगिक जनन के दौरान जीनों का यह यादृच्छिक मिश्रण भी आबादी की जैनेटिक भिन्नता को बढ़ता है। आबादी की जैनेटिक भिन्नता किसी दूसरी आबादी के साथ प्रजनन करने से भी बढ़ती है। इस कारण आबादी में वो जीन आ सकते हैं जो उसमें पहले से मौजूद नहीं थे।[32]

क्रम-विकास एक यादृच्छिक प्रक्रिया नहीं है। हालांकि डीएनए में उत्परिवर्तन यादृच्छिक ढंग से होता है, पर प्राकृतिक वरण यादृच्छिक प्रक्रिया नहीं है, उत्तरजीवन और प्रजनन की संभावना परिवेश पर निर्भर करती है। क्रम-विकास अरबों वर्षों के त्रुटिपूर्ण प्रतिलिपिकरण पर प्राकृतिक वरण का परिणाम है। क्रम-विकास का परिणाम बख़ूबी रचा गया जीव नहीं होता है। प्राकृतिक वरण का परिणाम अपने मौजूदा परिवेश के अनुकूलित जीव होते हैं। क्रम-विकास किसी परम लक्ष्य की तरफ प्रगति नहीं है। क्रम-विकास ज्यादा विकसित, ज्यादा बुद्धिमान या ज्यादा जटिल जीव बनाने का प्रयास नहीं करता है।[33] उदाहरण के लिए, पिस्सू (पंखहीन परजीवी) बिच्छू मक्खी (अंग्रेज़ी: scorpionfly) कहलाए जाने वाले एक पंखों वाले जीव के वंशज हैं, और अजगरों (जिन्हें अब पैरों की जरुरत नहीं है) में अभी भी नन्ही संरचनाएँ होती हैं जो उनके पूर्वजों के पिछले पैरों के अवशेष हैं।[34][35]

परिवेश में तीव्र परिवर्तन आम तौर पर अधिकतम जातियों को विलुप्त कर देता है।[36] पृथ्वी पर रही ९९ प्रतिशत से अधिक जातियाँ विलुप्त हो चुकी हैं।[37] पृथ्वी पर जीवन की शुरुवात के बाद से पांच प्रमुख सामूहिक विलुप्तियाँ हो चुकी हैं। इनके कारण जातियों की विविधता में बड़ी और आकस्मिक गिरावट हुई है। इन में सबसे ताज़ा क्रीटेशस-पैलियोजीन विलुप्ति घटना है, जो ६.६ करोड़ वर्ष पूर्व हुई थी।[38]

जैनेटिक ड्रिफ्ट

[संपादित करें]

जैनेटिक ड्रिफ्ट (अंग्रेज़ी: genetic drift) एक जाति की आबादियों में एलीलों (अंग्रेज़ी: allele) की आवृति के बदलने को कहते हैं। एलील किसी जीन के विभिन्न रूपांतरों को कहते हैं। ये बालों का रंग, त्वचा का रंग, आंखों का रंग, रक्त प्रकार आदि निर्धारित करते हैं। जैनेटिक ड्रिफ्ट आबादी में नए एलील नहीं लाती है, पर ये किसी एलील को आबादी से हटा कर जैनेटिक विविधता को कम कर सकती है। जैनेटिक ड्रिफ्ट एलीलों के यादृच्छिक चयन से होती है। चयन सही मायने में यादृच्छिक तब होता है जब उस पर कोई बाहरी बल प्रभाव नहीं डालता है। उदाहरण के लिए, समान माप और भार पर भिन्न रंगों के कंचों से भरे एक अपारदर्शी थैले से कुछ कंचे निकालना एक यादृच्छिक चयन है। कोई शख़्स अपने एलील अपने बच्चों को दे पाएगा या नहीं, ये उसके जीवित रहने पर निर्भर करता है जिसमें संयोग भी भूमिका निभाता है। संयोग (यादृच्छिक चयन) के कारण आबादी में एलिलों की आवृति के बदलने की इस प्रक्रिया को जैनेटिक ड्रिफ्ट कहते हैं।[39]

जैनेटिक ड्रिफ्ट बड़ी आबादियों की तुलना में छोटी आबादियों पर ज्यादा प्रभाव डालती है।[40]

हार्डी-वेनबर्ग नियम

[संपादित करें]

हार्डी-वेनबर्ग नियम कहता है कि हार्डी-वेनबर्ग साम्यवस्था (अंग्रेज़ी: equilibrium) में होने वाली एक बड़ी आबादी में पीढ़ियों के साथ एलीलों की आवृति नहीं बदलेगी।[41] मगर एक पर्याप्त आकार की आबादी का इस साम्यवस्था में पहुंचना असंभव है क्योंकि इस साम्यवस्था में पहुंचने के लिए ये पांच चीजें जरुरी हैं। १) आबादी का आकार अनंत होना चाहिए। २) उत्परिवर्तन की दर शून्य प्रतिशत होनी चाहिए, क्योंकि उत्परिवर्तन एलीलों को बदल सकता है या नए एलील बना सकता है। ३) आबादी से या में प्रव्रजन नहीं होना चाहिए, क्योंकि आबादी में आने वाले या आबादी को छोड़ने वाले शख़्स एलीलों की आवृति को बदल सकते हैं। ४) आबादी पर कोई चयनात्मक दबाव नहीं होने चाहिए, अर्थात किसी शख़्स के उत्तरजीवन या प्रजनन की संभावना दूसरों से ज्यादा नहीं होनी चाहिए। ५) समागम पूरी तरह से यादृच्छिक होना चाहिए, जहाँ सभी नर (या कुछ स्थितियों में मादा) बराबर आकर्षक साथी हों। यह एलिलों की सही मायने में यादृच्छिक मिलावट सुनिश्चित करता है।[42]

हार्डी-वेनबर्ग साम्यवस्था में आबादी ताश के पत्तों के एक डेक के अनुरूप है; डेक को चाहे जितनी बार फेंटा जाए, उसमें न कोई नया पत्ता आएगा और न कोई पत्ता निकलेगा। यहाँ आबादी में एलीलों की तुलना डेक के पत्तों से की गई है।

आबादी बोतलनैक

[संपादित करें]
आबादी बोतलनैक को प्रदर्शित करता एक रेखा-चित्र।

आबादी बोतलनैक (अंग्रेज़ी: population bottleneck) पर्यावरण की घटनाओं के कारण किसी जाति की आबादी के तेजी से कम हो जाने को कहते हैं।[43] एक सही मायने में यादृच्छिक आबादी बोतलनैक किसी एलील का पक्ष नहीं लेता है; अर्थात यह यादृच्छिक होता है कि कौन से शख़्स जीवित रहेंगे। एक बोतलनैक आबादी की जैनेटिक विविधता को कम या खत्म कर सकता है। इसके बाद की जैनेटिक ड्रिफ्ट आबादी की जैनेटिक विविधता को और कम कर सकती है। जैनेटिक विविधता की कमी आबादी को अन्य चयनात्मक दबावों के जोखिम में डाल सकती है।[44]

आबादी बोतलनैक का एक उदाहरण "उत्तरी एलीफैंट जलव्याघ्र" है। १९ वीं के अत्यधिक शिकार के कारण उत्तरी एलीफैंट जलव्याघ्रों की आबादी तीस शख़्सों से कम हो गई थी। संरक्षण के कारण इन की आबादी एक लाख से ज्यादा हो गई है और लगातार बढ़ रही है। पर आबादी बोतलनैक के प्रभाव साफ़ दिखाई देते हैं। आबादी में जैनेटिक विविधता के अभाव में इन जलव्याघ्रों को रोगों से काफी खतरा है और आनुवांशिकी विकार होने की बहुत संभावना है।[45]

संस्थापक का प्रभाव

[संपादित करें]
संस्थापक के प्रभाव का सरल चित्रण।

संस्थापक का प्रभाव (अंग्रेज़ी: founder effect) तब होता है जब आबादी की एक छोटी टोली बाकी आबादी से अलग होकर एक नई आबादी बन जाती है। अक्सर इसका कारण भौगोलिक अलगाव होता है। इस नई आबादी में एलिलों की आवृति अक्सर पुरानी आबादी से अलग होती है। अगली पीढ़ियों की जैनेटिक बनावट संस्थापकों की जैनेटिक बनावट पर निर्भर करेगी जो पुरानी आबादी से अलग होगी।[42]

संस्थापक के प्रभाव का एक उदाहरण अमिष (अंग्रेज़ी: Amish) लोगों के १७४४ के पेन्सिलवेनिया देशान्तरण से मिलता है। अमिषों की पेन्सिलवेनिया की कालोनी के दो संस्थापकों में एलिस–वैन क्रेवेल्ड संलक्षण (अंग्रेज़ी: Ellis–van Creveld syndrome) के रीसैसिव एलील (अंग्रेज़ी: recessive allele) थे। अमिष लोगों की अपने समुदाय के बाहर शादी न करने की प्रथा के कई पीढ़ियों तक चलने के कारण उन में एलिस–वैन क्रेवेल्ड संलक्षण की आवृति बाकी आबादी से काफ़ी ज्यादा है।[46]

इन्हें भी देखें

[संपादित करें]

सन्दर्भ

[संपादित करें]
  1. "Age of the Earth". United States Geological Survey. July 9, 2007. Archived from the original on 23 दिसंबर 2005. Retrieved 2015-05-29. {{cite web}}: Check date values in: |archive-date= (help)
  2. Dalrymple 2001, पृष्ठ 205–221
  3. Manhesa, Gérard; Allègre, Claude J. [in अंग्रेज़ी]; Dupréa, Bernard; Hamelin, Bruno (May 1980). "Lead isotope study of basic-ultrabasic layered complexes: Speculations about the age of the earth and primitive mantle characteristics". Earth and Planetary Science Letters. 47 (3). Amsterdam, the Netherlands: Elsevier: 370–382. Bibcode:1980E&PSL..47..370M. doi:10.1016/0012-821X(80)90024-2. ISSN 0012-821X.
  4. Schopf, J. William [in अंग्रेज़ी]; Kudryavtsev, Anatoliy B.; Czaja, Andrew D.; Tripathi, Abhishek B. (October 5, 2007). "Evidence of Archean life: Stromatolites and microfossils". Precambrian Research. 158 (3–4). Amsterdam, the Netherlands: Elsevier: 141–155. doi:10.1016/j.precamres.2007.04.009. ISSN 0301-9268.
  5. Schopf, J. William (June 29, 2006). "Fossil evidence of Archaean life". Philosophical Transactions of the Royal Society B. 361 (1470). London: Royal Society: 869–885. doi:10.1098/rstb.2006.1834. ISSN 0962-8436. PMC 1578735. PMID 16754604.
  6. Raven & Johnson 2002, पृष्ठ 68
  7. Borenstein, Seth (November 13, 2013). "Oldest fossil found: Meet your microbial mom". Excite. Yonkers, NY: Mindspark Interactive Network. Associated Press. Archived from the original on 29 जून 2015. Retrieved 2015-05-30.
  8. Pearlman, Jonathan (November 13, 2013). "'Oldest signs of life on Earth found'". डेली टेलीग्राफ. London: Telegraph Media Group. Archived from the original on 16 दिसंबर 2014. Retrieved 2014-12-15. {{cite news}}: Check date values in: |archive-date= (help)
  9. Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M. (November 16, 2013). "Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia". Astrobiology. 13 (12). New Rochelle, NY: Mary Ann Liebert, Inc.: 1103–1124. Bibcode:2013AsBio..13.1103N. doi:10.1089/ast.2013.1030. ISSN 1531-1074. PMC 3870916. PMID 24205812.
  10. Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi; et al. (January 2014). "Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks". Nature Geoscience. 7 (1). London: Nature Publishing Group: 25–28. doi:10.1038/ngeo2025. ISSN 1752-0894.
  11. Borenstein, Seth (19 October 2015). "Hints of life on what was thought to be desolate early Earth". Excite. Yonkers, NY: Mindspark Interactive Network. एसोसिएटेड प्रेस. Archived from the original on 23 अक्तूबर 2015. Retrieved 2015-10-20. {{cite news}}: Check date values in: |archive-date= (help)
  12. Bell, Elizabeth A.; Boehnike, Patrick; Harrison, T. Mark; et al. (19 October 2015). "Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon" (PDF). Proc. Natl. Acad. Sci. U.S.A. Washington, D.C.: National Academy of Sciences. doi:10.1073/pnas.1517557112. ISSN 1091-6490. Archived (PDF) from the original on 6 नवंबर 2015. Retrieved 2015-10-20. {{cite journal}}: Check date values in: |archive-date= (help) Early edition, published online before print.
  13. "Misconceptions about evolution". Understanding Evolution. University of California, Berkeley. Archived from the original on 27 अक्तूबर 2013. Retrieved 2015-09-26. {{cite web}}: Check date values in: |archive-date= (help)
  14. Harmon, Katherine (13 मई 2010). "The Proof Is in the Proteins: Test Supports Universal Common Ancestor for All Life". Scientific American (in अंग्रेज़ी). Scientific American. Archived from the original on 6 जनवरी 2016. Retrieved 24 दिसंबर 2015. {{cite web}}: Check date values in: |accessdate= (help)
  15. Futuyma 2005a
  16. Gould 2002
  17. Gregory, T. Ryan (June 2009). "Understanding Natural Selection: Essential Concepts and Common Misconceptions". Evolution: Education and Outreach. 2 (2). New York: Springer Science+Business Media: 156–175. doi:10.1007/s12052-009-0128-1. ISSN 1936-6434. Retrieved 2015-01-07. {{cite journal}}: Invalid |ref=harv (help)[मृत कड़ियाँ]
  18. Garvin-Doxas, Kathy; Klymkowsky, Michael W. (Summer 2008). Alberts, Bruce (ed.). "Understanding Randomness and its Impact on Student Learning: Lessons Learned from Building the Biology Concept Inventory (BCI)". CBE—Life Sciences Education. 7 (2). Bethesda, MD: American Society for Cell Biology: 227–233. doi:10.1187/cbe.07-08-0063. ISSN 1931-7913. PMC 2424310. PMID 18519614. {{cite journal}}: Invalid |ref=harv (help)
  19. Raup 1992, पृष्ठ 210
  20. Rhee, Seung Yon. "Gregor Mendel (1822-1884)". Access Excellence. Atlanta, GA: National Health Museum. Archived from the original on 27 दिसंबर 2014. Retrieved 2015-01-07. {{cite web}}: Check date values in: |archive-date= (help)
  21. Farber 2000, पृष्ठ 136
  22. Darwin 2005
  23. Eldredge, Niles (Spring 2006). "Confessions of a Darwinist". Virginia Quarterly Review. 82 (2). Charlottesville, VA: University of Virginia: 32–53. ISSN 0042-675X. Archived from the original on 6 सितंबर 2015. Retrieved 2015-01-07. {{cite journal}}: Invalid |ref=harv (help)
  24. Quammen, David (November 2004). "Was Darwin Wrong?". National Geographic (Online extra). Washington, D.C.: National Geographic Society. ISSN 0027-9358. Archived from the original on 25 अक्तूबर 2015. Retrieved 2007-12-23. {{cite journal}}: Check date values in: |archive-date= (help)
  25. van Wyhe, John (2002). "Fertilisation of Orchids". The Complete Work of Charles Darwin Online. OCLC 74272908. Archived from the original on 18 दिसंबर 2007. Retrieved 2008-01-07. {{cite web}}: Check date values in: |archive-date= (help)
  26. van Wyhe, John (2002). "Charles Darwin: gentleman naturalist". The Complete Work of Charles Darwin Online. OCLC 74272908. Archived from the original on 13 जनवरी 2020. Retrieved 2008-01-16.
  27. Delgado, Cynthia (July 28, 2006). "Finding the Evolution in Medicine". NIH Record. 58 (15). Bethesda, MD: National Institutes of Health: 1, 8–9. ISSN 1057-5871. Archived from the original on 24 सितंबर 2015. Retrieved 2015-01-09. {{cite journal}}: Invalid |ref=harv (help)
  28. Futuyma 2005b, पृष्ठ 93–98
  29. Darwin 1872, पृष्ठ 108, "Effects of the increased Use and Disuse of Parts, as controlled by Natural Selection"
  30. Ghiselin, Michael T. (September–October 1994). "The Imaginary Lamarck: A Look at Bogus 'History' in Schoolbooks". The Textbook Letter. Sausalito, CA: The Textbook League. OCLC 23228649. Archived from the original on 12 फ़रवरी 2008. Retrieved 2008-01-23.
  31. "Sex and genetic shuffling". Understanding Evolution. University of California, Berkeley. Archived from the original on 4 नवंबर 2015. Retrieved 2015-01-08. {{cite web}}: Check date values in: |archive-date= (help)
  32. "Gene flow". Understanding Evolution. University of California, Berkeley. Archived from the original on 23 अक्तूबर 2015. Retrieved 2015-01-08. {{cite web}}: Check date values in: |archive-date= (help)
  33. Gould 1980, पृष्ठ 24
  34. Bejder, Lars; Hall, Brian K. (November 2002). "Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss". Evolution & Development. 4 (6). Hoboken, NJ: Wiley-Blackwell on behalf of the Society for Integrative and Comparative Biology: 445–458. doi:10.1046/j.1525-142X.2002.02033.x. ISSN 1520-541X. PMID 12492145. {{cite journal}}: Invalid |ref=harv (help)
  35. Boughner, Julia C.; Buchtová, Marcela; Fu, Katherine; et al. (June 25, 2007). "Embryonic development of Python sebae – I: Staging criteria and macroscopic skeletal morphogenesis of the head and limbs". Zoology. 110 (3). Amsterdam, the Netherlands: Elsevier: 212–230. doi:10.1016/j.zool.2007.01.005. ISSN 0944-2006. PMID 17499493. {{cite journal}}: Invalid |ref=harv (help)
  36. "Frequently Asked Questions About Evolution". Evolution Library (Web resource). Evolution. Boston, MA: WGBH Educational Foundation; Clear Blue Sky Productions, Inc. 2001. OCLC 48165595. Archived from the original on 8 जून 2019. Retrieved 2008-01-23.
  37. "A Modern Mass Extinction?". Evolution Library (Web resource). Evolution. Boston, MA: WGBH Educational Foundation; Clear Blue Sky Productions, Inc. 2001. OCLC 48165595. Archived from the original on 24 सितंबर 2015. Retrieved 2008-01-23.
  38. Bambach, Richard K.; Knoll, Andrew H.; Wang, Steve C. (December 2004). "Origination, extinction, and mass depletions of marine diversity" (PDF). Paleobiology. 30 (4). Boulder, CO: Paleontological Society: 522–542. doi:10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2. ISSN 0094-8373. Archived (PDF) from the original on 4 मार्च 2016. Retrieved 30 अक्तूबर 2015. {{cite journal}}: Check date values in: |access-date= (help); Invalid |ref=harv (help)
  39. Futuyma 1998, पृष्ठ Glossary
  40. Ellstrand, Norman C.; Elam, Diane R. (November 1993). "Population Genetic Consequences of Small Population Size: Implications for Plant Conservation". Annual Review of Ecology and Systematics. 24. Palo Alto, CA: Annual Reviews: 217–242. doi:10.1146/annurev.es.24.110193.001245. ISSN 1545-2069. {{cite journal}}: Invalid |ref=harv (help)
  41. Ewens 2004
  42. Campbell & Reece 2002, पृष्ठ 445–463
  43. "Population Bottleneck". Genetics। (2003)। New York: Macmillan Reference USA। अभिगमन तिथि: 2011-04-07
  44. Futuyma 1998, पृष्ठ 303–304
  45. Hoelzel, A. Rus; Fleischer, Robert C.; Campagna, Claudio; et al. (July 2002). "Impact of a population bottleneck on symmetry and genetic diversity in the northern elephant seal". Journal of Evolutionary Biology. 15 (4). Hoboken, NJ: Wiley-Blackwell on behalf of the European Society for Evolutionary Biology: 567–575. doi:10.1046/j.1420-9101.2002.00419.x. ISSN 1010-061X. {{cite journal}}: Invalid |ref=harv (help)
  46. "Genetic Drift and the Founder Effect". Evolution Library (Web resource). Evolution. Boston, MA: WGBH Educational Foundation; Clear Blue Sky Productions, Inc. 2001. OCLC 48165595. Archived from the original on 4 नवंबर 2015. Retrieved 2009-04-07. {{cite web}}: Check date values in: |archive-date= (help)

ग्रंथ सूची

[संपादित करें]