हिप्पोकैम्पस

मुक्त ज्ञानकोश विकिपीडिया से
Jump to navigation Jump to search
हिप्पोकैम्पस
हिप्पोकैम्पस

Gray739-emphasizing-hippocampus.png
The hippocampus is located in the medial temporal lobe of the brain. In this lateral view of the human brain, the frontal lobe is at left, the occipital lobe at right, and the temporal and parietal lobes have largely been removed to reveal the hippocampus underneath.
Part of Temporal lobe
NeuroNames hier-164

हिप्पोकैम्पस मानव तथा अन्य स्तनधारियों के मस्तिष्क का एक प्रमुख घटक है. यह लिम्बिक प्रणाली का भाग है तथा दीर्घकालीन स्मृति व स्थानिक दिशा-निर्देशन में महत्वपूर्ण भूमिका निभाता है. सेरेब्रल कोर्टेक्स की तरह ही, जिसके साथ यह सम्बद्ध है, यह एक युग्म आकार में पाया जाता है, दर्पण की छवि की तरह ही इसके दोनों हिस्से मस्तिष्क के बाएं व दायें भागों में होते हैं.मनुष्यों तथा अन्य वानर प्रजातियों में हिप्पोकैम्पस मेडियल टेम्पोरल लोब के अन्दर तथा कोर्टिकल सतह के नीचे स्थित होता है. इसके दो मुख्य एक दुसरे से जुड़ने वाले भाग होते हैं: एम्मन का होर्न तथा डेंटेट जायरस.

अल्जाइमर रोग मस्तिष्क के क्षतिग्रस्त होने वाले प्रथम भागों में से एक होता है; स्मृति सम्बंधित कठिनाइयां तथा स्थितिभ्रम इसके पहले लक्षण होते हैं. हिप्पोकैम्पस को होने वाला नुकसान ऑक्सीजन की कमी (हाइपौक्सिया), एन्सेफलाइटिस अथवा मेडियल टेम्पोरल लोब मिर्गी के कारण भी हो सकता है. ऐसे व्यक्ति जिनके हिप्पोकैम्पस को अधिक क्षति पहुंची हो, को विस्मरण (ऐम्नेसिया) की समस्या हो सकती है जिसमें नयी स्मृति को रखने अथवा बनाने में अक्षमता हो जाती है.

कृन्तकों में, हिप्पोकैम्पस का गहन अध्ययन मस्तिष्क की ऐसी प्रणाली के रूप में किया गया जो व्यावहारिक निषेध व सावधानी, स्थानिक स्मृति तथा दिशा-निर्देशन के लिए जिम्मेदार होती है. चूहों में हिप्पोकैम्पस को पहुंची क्षति का एक प्रमुख लक्षण गतिविधि का बढ़ जाना होता है. चूहे व मूषक के हिप्पोकैम्पस के बहुत से न्युरौन स्थानिक कोशिकाओं के रूप में कार्य करती हैं: जब यह जीव अपने परिवेश के किसी विशिष्ट भाग में जाता है तो यह एक्शन पोटेंशियल की बौछार करती हैं. हिप्पोकैम्पस की कोशिकाएं तथा सिर की दिशा तय करने वाली कोशिकाएं, जिनकी गतिविधि जड़त्व दिशा-सूचक यन्त्र के रूप में होती है, वृहद् रूप से एक-दूसरे को प्रभावित करती हैं, इसके साथ ही पास ही स्थित एंथोराइनल कॉर्टेक्स में विद्यमान ग्रिड सेल भी इसमें सम्मिलित होती हैं.

चूंकि हिप्पोकैम्पस की सतहों में न्यूरोनल कोशिकाओं के विभिन्न प्रकार स्पष्ट रूप से बिछे होते हैं, अतः इसका प्रयोग अक्सर न्यूरोफ़िज़िओलौजी के अध्ययन के लिए आदर्श प्रणाली के रूप में किया जाता है. लॉन्ग-टर्म पोटेंशिएशन (एलटीपी) के रूप में जानी गयी न्यूरल प्लास्टीसिटी के प्रकार को सर्वप्रथम हिप्पोकैम्पस में पाया गया तथा तब से इसका इस रूप में ही अध्ययन किया जाता है. एलटीपी को व्यापक रूप से उस मुख्य तंत्रिका प्रक्रिया के सामान माना जाता है जिसके द्वारा मस्तिष्क में स्मृति सहेजी जाती है.

नाम[संपादित करें]

हंगरी तंत्रिका वैज्ञानिक लैस्ज़लो सेरेस ने 1980 में मानव हिप्पोकैम्पस और फोर्निक्स के आकार की तुलना समुद्री घोड़े से की.

लेटरल वेंट्रिकल के टेम्पोरल होर्न की निचली सतह के साथ लगी हुई मेड़दार आकृति का सर्वप्रथम वर्णन वेनिस के शरीर-रचना वैज्ञानिक जूलियस सीज़र अरांज़ी (1587) द्वारा किया गया है, जिसमें उन्होंने सर्वप्रथम उसको समुद्री घोड़े जैसा बताया जिसमें उन्होंने लातिन : hippocampus का प्रयोग किया (यूनानी : ἵππος से, "घोड़ा" तथा यूनानी : κάμπος, "समुद्री राक्षस") अथवा वैकल्पिक रूप से रेशम के कीट से भी इसकी तुलना की है. जर्मन शरीर-रचना वैज्ञानिक डूवर्नोय (1729) ने सर्वप्रथम इसका वर्णन करते हुए अनिश्चय के साथ इसे "समुद्री घोड़े" तथा "रेशमकीट" जैसा बताया. डेनिश शरीर-रचना वैज्ञानिक जैकब विनस्लो ने 1732 में इसका नाम "भेड़ का सींग" प्रस्तावित किया; दशक भर बाद पेरिस के शरीर-रचना वैज्ञानिक, दि सर्जन डि गेरेनजिओट ने इसके लिए शब्द "कोर्नु एम्मोनिस" - एमन (प्राचीन मिस्र के भगवान) का सींग - का प्रयोग किया.[1]

एक अन्य पौराणिक सन्दर्भ शब्द पेस हिप्पोकैम्पी (pes hippocampi) के साथ आया जिसकी उत्पत्ति 1672 में डाईमरब्रोक द्वारा मानी गयी है, इसमें इसकी तुलना पौराणिक हिप्पोकैम्पस (ग्रीक: ἱππόκαμπος) से की गयी जिसके मुड़े हुए अगले पंजे तथा झिल्लीदार पांव होते हैं, एक समुद्री राक्षस जिसका अगला भाग घोड़े जैसा तथा मछली की तरह पूंछ होती है. उस समय हिप्पोकैम्पस का वर्णन पेस हिप्पोकैम्पी मेजर के रूप में किया गया और इसके सन्निकट औसिपिटल होर्न का उभार था, जिसे कैलकर एविस कहते हैं, इसका नाम पेस हिप्पोकैम्पी माइनर रखा गया.[1] हिप्पोकैम्पस का नाम हिप्पोकैम्पस मेजर तथा कैलकर एविस का नाम हिप्पोकैम्पस माइनर रखे जाने का कारण 1786 में फेलिक्स विक-डी एज़िर (Félix Vicq-d'Azyr) की मस्तिष्क के भागों के नामकरण की प्रणाली थी. मायर ने 1779 में त्रुटिवश शब्द हिप्पोपोटेमस का प्रयोग किया और उनके बाद कई लेखकों ने इसे दोहराया जब तक कि 1829 में कार्ल फ्राइडरिच बर्डाक द्वारा इस त्रुटि को सुधर नहीं दिया गया. 1861 में हिप्पोकैम्पस माइनर थॉमस हेनरी हक्सले तथा रिचर्ड ओवेन के बीच मानव के क्रमिक विकास को लेकर एक विवाद का कारण बन गया, इस वजह से ग्रेट हिप्पोकैम्पस के प्रश्न को लेकर व्यंग्य किये जाने लगे. शब्द हिप्पोकैम्पस माइनर का प्रयोग शरीर रचना विज्ञान की पाठ्यपुस्तकों में किया जाना बंद कर दिया गया तथा इसे 1895 में नौमिना एनाटोमिका में आधिकारिक रूप से हटा दिया गया.[2]

आजकल, इस संरचना को हिप्पोकैम्पस मेजर के स्थान पर हिप्पोकैम्पस कहा जाता है, पेस हिप्पोकैम्पी को डि गेरेनजिओट के "कोर्नु एम्मोनिस" के समानार्थी शब्द के रूप में प्रयोग किया जाता है,[1] यह नाम हिप्पोकैम्पस के चार मुख्य हिस्टोलॉजी विभाजन के नामों में बचा रह गया है: सीए1, CA2, CA3 तथा CA4.[3]

कार्य[संपादित करें]

हिप्पोकैम्पस (एनिमेशन)

ऐतिहासिक रूप से, व्यापक रूप से जानी गयी शुरूआती अवधारणा थी कि हिप्पोकैम्पस घ्राण इन्द्री से सम्बन्ध रखता है. 70 के दशक के शुरूआती वर्षों में किये गए शरीर-रचना विज्ञान के परीक्षणों से पता चला कि हिप्पोकैम्पस को ओल्फैक्टरी बल्ब से सीधे निर्देश प्राप्त नहीं होते हैं.[4] हालांकि, बाद के शोधों से यह सिद्ध हुआ कि ओल्फैक्टरी बल्ब लेटरल एंटोराइनल कोर्टेक्स के वेंट्रल भाग को अवश्य प्रक्षेपित करता है, तथा वेंट्रल हिप्पोकैम्पस में स्थित फील्ड CA1 मुख्य ओल्फैक्टरी बल्ब[5], एन्टेरियर ओल्फैक्टरी न्यूक्लियस तथा प्राइमरी ओल्फैक्टरी कोर्टेक्स को एक्सोन प्रेषित करता है. हिप्पोकैम्पल ओल्फैक्टरी प्रतिक्रिया में लोगों की रूचि बनी हुई है, विशेष रूप से गंधों की स्मृति में हिप्पोकैम्पस की भूमिका को लेकर, परन्तु आजकल कुछ ही लोग यह मानते हैं कि इसका मुख्य कार्य घ्राण से सम्बंधित है.[6][7]

इतने वर्षों में हिप्पोकैम्पस की भूमिका को लेकर तीन मुख्य विचार साहित्य में मुख्य रूप से हैं: निषेध, स्मृति और स्थान. व्यवहारिक निषेध सिद्धांत (ओ'कीफे तथा नाडेल द्वारा इसे "जोर से ब्रेक लगाओ!" (slam on the brakes!) के रूप में हास्यास्पद बनाया गया था)[8] 1960 के दशक तक बहुत लोकप्रिय था. इसे विशेष रूप से दो प्रेक्षणों से प्रमाणिकता प्राप्त हुई: पहला, ऐसे पशु जिनमें हिप्पोकैम्पस क्षतिग्रस्त होता था, अतिक्रियाशील होते थे; दूसरे, क्षतिग्रस्त हिप्पोकैम्पस वाले पशु अक्सर पहले सिखाई गयी निषेधात्मक प्रतिक्रिया को सीखने में कठिनाई महसूस करते थे, विशेष रूप से तब जबकि प्रतिक्रिया के रूप में उन्हें शांत रहना होता था जैसा कि पैसिव एवोइडेन्स परिक्षण में किया जाता था.जेफ़री ग्रे ने इस सोच को उत्कंठा की स्थिति में हिप्पोकैम्पस की भूमिका के परिपूर्ण सिद्धांत में बदल दिया.[9] वर्तमान में निषेध का सिद्धांत तीनों विचारों में से अल्पतम लोकप्रिय है.[10]

दूसरी बड़ी विचारधारा हिप्पोकैम्पस को स्मृति से जोडती है. हालांकि इसके पूर्ववर्ती उदाहरण उपलब्ध हैं, इस विचार की मुख्य प्रेरणा स्कोविल व ब्रेंडा मिलनर[11] की एक प्रसिद्ध रिपोर्ट है जिसमें एक रोगी हेनरी गुस्ताव मोलैसों,[12] जिसे अपनी 2008 में अपनी मृत्यु तक एच.एम. के रूप में जाना जाता था, के हिप्पोकैम्पस को शल्य चिकित्सा द्वारा नष्ट किया गया (ऐसा उसकी मिर्गी के दौरों को उपचारित करने के लिए किया गया).इस शल्य क्रिया का अप्रत्याशित परिणाम गंभीर एंटेरोग्रेड तथा आंशिक रेट्रोग्रेड एम्नेजिया के रूप में सामने आया: एच.एम. अपनी शल्य-क्रिया के बाद सांयोगिक स्मृतियां बनाने में अक्षम हो गया तथा वह शल्य-क्रिया तुरंत पहले की घटनाओं को याद नहीं रख पाता था, परन्तु वर्षों पहले हुई घटनाएं, जैसे कि उसका बचपन, उसे याद थीं. इस मामले में लोगों की रूचि इतनी अधिक बढ़ी कि एच.एम. सबसे अधिक गहन अध्ययन किया जाने वाला चिकित्सा विषय बन गया.[13] आगामी वर्षों में अन्य रोगियों का, जिनमें लगभग सामान स्तर की हिप्पोकैम्पस क्षति तथा एम्नेजिया (रोग या दुर्घटना के द्वारा), अध्ययन किया गया तथा शरीर क्रिया विज्ञान के हजारों प्रयोग किये गए जिसमें हिप्पोकैम्पस में सूत्रयुग्मक संयोजन (synaptic connections) के गतिशीलता आधारित बदलाव शामिल थे. अब सारे विश्व में यह सहमति है कि हिप्पोकैम्पस स्मृति में कुछ विशिष्ट भूमिका निभाता है, हलाकि इस भूमिका का एकदम सही स्वरुप अभी ज्ञात नहीं है.[14][15]

हिप्पोकैम्पस के कार्य का तीसरा महत्वपूर्ण सिद्धांत हिप्पोकैम्पस को स्थानिकी से जोड़ता है. स्थानिक सिद्धांत के मूल पक्ष-समर्थक ओ'कीफे तथा नाडेल थे, जो कि ई.सी. टोलमन के मानवों तथा स्तन धारियों में "संज्ञानात्मक नक्शों" (cognitive maps) के सिद्धांत से प्रभावित थे. ओ'कीफे तथा उनके छात्र दोस्त्रोव्सकी ने 1971 में ऐसे न्युरौनों की खोज की जो चूहों में उनकी पारिस्थिति में स्थिति के अनुसार व्यवहार को दर्शाते थे.[16] अन्य जांचकर्ताओं के संशय के बावजूद, ओ'कीफे तथा उनके सहकर्मी, विशेष रूप से लिन नाडेल इस समस्या को सुलझाने में लगे रहे, इस दिशा में उनके कार्य की परिणति 1978 की एक बहुत प्रभावशाली पुस्तक, दि हिप्पोकैम्पस ऐज़ ए कौगनिटिव मैप के रूप में हुई.[17] स्मृति के सिद्धांत रूप में अब यह एक सर्वसम्मति है कि स्थानिक कोडिंग हिप्पोकैम्पस के कार्य में एक विशिष्ट भूमिका निभाती है, परन्तु इसके विस्तृत ब्योरे अभी तर्क का विषय हैं.[18]

स्मृति में भूमिका[संपादित करें]

इन्हें भी देखें: Amnesia

मनोवैज्ञानिक और तंत्रिका-वैज्ञानिक आम तौर पर सहमत हैं कि हिप्पोकैम्पस नयी स्मृतियों के बनने में, जो अनुभव से जुडी होती हैं, एक विशिष्ट भूमिका निभाता है (सांयोगिक अथवा दैनिक जीवन संबंधी स्मृतियां).[15][19] इसी भूमिका के भाग के रूप में हिप्पोकैम्पस का कार्य विशेष घटनाओं, स्थानों व उद्दीपकों को पहचानना भी है.[20] कुछ शोधकर्ता हिप्पोकैम्पस को वृहद् मेडियल टेम्पोरल लोब स्मृति प्रणाली जो सामान्य ज्ञापक स्मृति के लिए जिम्मेदार है, का ही भाग मानते हैं (ये वे स्मृतियां होती हैं जिन्हें स्पष्ट रूप से बोल कर व्यक्त किया जा सकता है - उदाहरण के लिए इनमें सांयोगिक स्मृतियों के साथ साथ तथ्यों की स्मृति शामिल हैं).[14]

हिप्पोकैम्पस को गंभीर क्षति पहुंचने पर नयी स्मृतियां बनाने में बहुत कठिनाई होती है (एंटेरोग्रेड एम्नेसिया) और अक्सर यह इस क्षति से पहले बनी स्मृतियों को भी प्रभावित करती है (रेट्रोग्रेड एम्नेसिया). हालांकि यह रेट्रोग्रेड प्रभाव सामान्य रूप से मस्तिष्क क्षति के कुछ वर्षों पूर्व तक ही फैलता है, कुछ मामलों में इससे पुराणी स्मृतियां सुरक्षित रहती हैं - इस पुरानी स्मृतियों के बच जाने से इस विचार को बल मिलता है कि समय के साथ स्मृतियां हिप्पोकैम्पस से मस्तिष्क के अन्य भागों में स्थानांतरित हो जाती हैं.[21]

हिप्पोकैम्पस को हुआ नुकसान कुछ प्रकार की स्मृतियों को प्रभावित नहीं करता है - जैसे नए मोटर अथवा संज्ञानात्मक कौशल को सीखने की क्षमता (उदाहरण के लिए वाद्य यन्त्र बजाना, या कुछ प्रकार की पहेलियों को सुलझाना). इस तथ्य से पता चलता है कि इस प्रकार की क्षमताएं अन्य प्रकार की स्मृतियों (प्रक्रियात्मक स्मृति) पर निर्भर होती हैं और मस्तिष्क के दूसरे क्षेत्रों से सम्बन्ध रखती हैं. इसके अलावा, एम्नेसिया के रोगी अक्सर अनुभव के लिए "अप्रत्यक्ष" स्मृति प्रदर्शित करते हैं, जबकि उनमें चेतन रूप से उस ज्ञान का अभाव होता है. उदाहरण के लिए, किसी मरीज से यह पूछे जाने पर कि दो चेहरों में से कौन सा अभी हाल ही में देखा गया है, वह अधिकांश बार सही उत्तर देता है, हलाकि वह यह भी कहता है कि उसने ये दोनों ही चेहरे कभी नहीं देखे हैं. कुछ शोधकर्ता चेतन स्मरण (conscious recollection), जो हिप्पोकैम्पस पर निर्भर करता है, तथा समानता (familiarity), जो मेडियल टेम्पोरल कॉर्टेक्स के अन्य भागों पर निर्भर करती है, में विभेद करते हैं.[22]

स्थानिक स्मृति और दिशा-निर्देशन में भूमिका[संपादित करें]

[[File:Triangle-place-cells.png|thumb|चूहे की पृष्ठस्थ सीए1 पर्त में एक इलेक्ट्रोड द्वारा सात स्थानिक कोशिकाओं से सहेजी गयी स्थान सम्बन्धी उत्सर्जन पद्धति.चूहा ने एक क्रमशः ऊंचे होते हुए त्रिभुजाकार दौड़पथ में सैकड़ों चक्कर लगाये, दौड़पथ की प्रत्येक भुजा के बीच में रुक कर वह पुरस्कार के रूप में दिया गया भोजन प्राप्त करता था.काले बिंदु चूहे के सर की स्थिति दर्शाते हैं; रंगीन बिंदु उन स्थानों को दर्शाते हैं जहां एक्शन पोटेंशियल उत्पन्न हुए, प्रत्येक कोशिका के लिए अलग रंग का प्रयोग किया गया है. स्वतन्त्र चूहों व मूषकों पर किये गए अध्ययन से यह पता चलता है कि हिप्पोकैम्पस के न्युरोनों में "प्लेस फील्ड्स" होते हैं, जो कि चूहों को अपनी पारिस्थिति के किसी विशेष भाग में जाने पर ऐक्शन पोटेंशियल का उत्सर्जन करते हैं. वानरों में प्लेस कोशिकाओं के प्रमाण कम उपलब्ध हैं, ऐसा शायद इसलिए है क्योंकि मुक्त रूप से घूमते बंदरों में मस्तिष्क की गतिविधियों को दर्ज करना कठिन कार्य है. स्थान संबंधी हिप्पोकैम्पस न्यूरल गतिविधियां बंदरों में अवरोध युक्त कुर्सियों के प्रयोग के साथ एक कमरे में घुमते हुए दर्ज की गयी हैं,[23] दूसरी ओर एडमंड रोल्स तथा उनके साथियों द्वारा कहा गया कि हिप्पोकैम्पल कोशिकाओं द्वारा उत्सर्जन बंदरों की दृष्टि जिस तरफ थी उसके अनुसार हुआ न कि जहां उनका शरीर विद्यमान था.[24] मनुष्यों में स्थान विशेष के अनुसार उत्सर्जन करने वाली कोशिकाओं की पुष्टि एक अध्ययन के दौरान हुई जिनको दवा से ठीक न हो सकने वाली मिर्गी की शिकायत थी और जो अपने दौरों के केंद्र को चिन्हित करने के लिए हस्तक्षेप प्रक्रिया (invasive procedure) करवा रहे थे, जिसका सम्बन्ध शल्य-क्रिया द्वारा अंगच्छेदन से है. इन मरीजों के हिप्पोकैम्पस में नैदानिक इलेक्ट्रोड लगाये गए थे तथा इसके बाद कंप्यूटर के प्रयोग से आभासी वास्तविकता (virtual reality) द्वारा उन्हें एक शहर में घुमाया गया.[25]

चूहों तथा मूषकों पर स्थानिक प्रतिक्रियाओं के सैकड़ों प्रयोग, जो कि चार दशकों से भी अधिक से चल रहे हैं, की सहायता से हमारे पास सूचना की बड़ी मात्रा उपलब्ध है.[18] स्थानिक कोशिकाओं की प्रतिक्रिया मुख्य हिप्पोकैम्पस में पिरामिड के आकार की कोशिकाओं द्वारा तथा डेंटेट जाइरस की कणिका आकार की कोशिकाओं द्वारा की जाती है. इनसे मिलकर ही हिप्पोकैम्पस कि सघन परतों में स्थित अधिकांश न्युरौनों का निर्माण होता है. इनहीबीटरी इंटरन्युरौन, जो शेष कोशिकाओं में से अधिकांश का निर्माण करते हैं, अक्सर उत्सर्जन दर में स्थानिक विविधता लाते हैं, पर यह पिरामिड आकार की अथवा कणिका आकार की कोशिकाओं की तुलना में बहुत कम होती है. स्थानिक विवरण में स्थलाकृति निरूपण बहुत थोड़ी ही है: हिप्पोकैम्पस में एक दुसरे से सटी कोशिकाओं में आमतौर से स्थानिक उत्सर्जन का स्वरुप एक दुसरे से बहुत भिन्न होता है. जब चूहा अपने स्थान क्षेत्र से बहार होता है तो स्थानिक कोशिकाएं आमतौर से शांत रहती हैं, पर जब वह केंद्र के निकट पहुंचता है तो वे अनवरत दर, जो कि 40 हर्ट्ज़ तक हो सकती है, प्राप्त कर लेती हैं. 30-40 क्रम रहित स्थानिक कोशिका नमूनों से प्राप्त तंत्रिका गतिविधि के आधार पर मालूम होता है कि उनमें इतनी सूचना एकत्रित होती है कि चूहा अपनी स्थिति को निश्चय के साथ दोबारा पा सकता है. स्थान क्षेत्रों का आकार हिप्पोकैम्पस के आकार के अनुपात परिवर्तित होता है, पृष्ठीय छोर पर स्थित कोशिकाएं सबसे छोटा क्षेत्र दर्शाती हैं, केंद्र के पास की कोशिकाएं बड़े क्षेत्र दर्शाती हैं और वेंट्रल सिरे की कोशिकाएं पूरे परिक्षेत्र को ढंकती हैं.[18] कुछ मामलों में, चूहे के हिप्पोकैम्पस की कोशिकाओं की उत्सर्जन दर सिर्फ स्थान पर ही निर्भर न करके चूहे के चलने की दिशा, जिस लक्ष्य की ओर वह जा रहा है, तथा अन्य कार्य-सम्बन्धी चरों पर भी निर्भर करती है.[26]

स्थानिक कोशिकाओं की 1970 में हुई खोज से इस सिद्धांत की शुरुआत हुई कि हिप्पोकैम्पस संज्ञानात्मक मानचित्र की तरह कार्य करता है - वह उस पारिस्थितिक अभिन्यास का न्यूरल निरूपण होता है.[27] उपलब्ध साक्ष्य कई आधारों पर इस परिकल्पना का समर्थन करते हैं. यह एक बारम्बार किया गया अवलोकन है कि पूरी तरह सक्रीय हिप्पोकैम्पस के बिना मनुष्य यह याद नहीं रख सकते कि वे कहां हैं तथा जहां वे जा रहे हैं, वहां कैसे पहुंचना है: मार्ग भटक जाना एम्नेसिया का सबसे आम लक्षण है.[28] जानवरों के साथ अध्ययन से पता चलता है कि एक अक्षुण्ण हिप्पोकैम्पस स्थानिक स्मृति कार्यों के लिए आवश्यक है, विशेष रूप से ऐसे कार्यों के लिए जिनमें एक छिपे हुए लक्ष्य को प्राप्त करना हो.[29] "संज्ञानात्मक मानचित्र परिकल्पना" को हाल की खोजों, जैसे सर की दिशासूचक कोशिकाएं, ग्रिड कोशिकाएं तथा बॉर्डर कोशिकाओं से और बल मिला जो कि क्रन्तकों के मस्तिष्क के कई हिस्सों में पायी जाती हैं तथा हिप्पोकैम्पस से सुदृढ़ रूप से जुडी होती हैं.[18][30]

ब्रेन इमेजिंग से पता चलता है कि अधिक सक्रिय हिप्पोकैम्पस वाले व्यक्ति बेहतर दिशा-निर्देशन कर पाते हैं जैसा कि कंप्यूटर सिम्युलेशन आधारित "आभासी" दिशा-निर्देशन से सिद्ध हुआ.[31] इसके अलावा, इस बात के प्रमाण हैं कि हिप्पोकैम्पस छोटा रास्ता मालूम करने तथा ज्ञात स्थानों के बीच नए रास्ते खोजने में भूमिका अदा करता है. उदाहरण के लिए, लंदन के टैक्सी ड्राइवरों को बड़ी संख्या में स्थानों तथा उन तक पहुंचने के सबसे सीधे रास्तों का ज्ञान होना आवश्यक है (उन्हें एक प्रसिद्द काली टैक्सियों का लाइसेंस प्राप्त करने से पूर्व एक कठिन परीक्षा, दि नौलेज, उत्तीर्ण करनी होती है). मैग्वायर तथा अन्य ..(2000)[32] द्वारा यूनिवर्सिटी कॉलेज लन्दन में किये गए अध्ययन से मालूम हुआ की टैक्सी ड्राइवरों का हिप्पोकैम्पस अन्य लोगों से बड़ा था तथा अधिक अनुभवी ड्राइवरों का हिप्पोकैम्पी और अधिक बड़ा था. एक बड़ा हिप्पोकैम्पस किसी व्यक्ति को टैक्सी ड्राइवर होने में मदद करता है अथवा जीवन यापन के लिए छोटे मार्गों को तलाशने के कारण किसी व्यक्ति के हिप्पोकैम्पस का आकार बढ़ जाता है यह अभी स्पष्ट होना बाकी है. हालांकि, मैग्वायर तथा अन्य.. द्वारा किये गए अध्ययन में ग्रे मैटर के आकार तथा टैक्सी ड्राइवर के रूप में कार्य करने की उसकी अवधि के बीच सहसंबंध को तलाशा गया, तथा टैक्सी ड्राइवर के रूप में कार्य करने की उसकी अवधि एवं दायें हिप्पोकैम्पस का आयतन में धनात्मक सहसंबंध पाया गया. यह पाया गया कि हिप्पोकैम्पस की कुल मात्रा नियंत्रण समूह बनाम टैक्सी ड्राइवरों में अपरिवर्तनशील ही रही. इसका यह आशय है कि टैक्सी ड्राइवरों के हिप्पोकैम्पस के पोस्टेरियर भाग का आकार तो अवश्य बढ़ा, लेकिन एन्टेरियर भाग की कीमत पर. हिप्पोकैम्पस के भागों के इस बदले अनुपात के हनिपूर्ण प्रभाव अभी ज्ञात नहीं हैं.[32]

ऐनाटॉमी[संपादित करें]

एक मकाउ बन्दर के मस्तिष्क का निस्सल-रंजित कोरोनल हिस्सा, जिसमें हिप्पोकैम्पस दिख रहा है (गोले के अन्दर).स्रोत: brainmaps.org

शरीर-रचना विज्ञान के अनुसार हिप्पोकैम्पस सेरेब्रल कॉर्टेक्स के सिरे का विस्तार है.[33] वे संरचनायें जो कॉर्टेक्स के सिरे की सीध में होती हैं, तथा-कथित लिम्बिक प्रणाली का निर्माण करती हैं (लैटिन लिम्बस = सीमा): इनमें शामिल हैं हिप्पोकैम्पस, सिंग्युलेट कॉर्टेक्स, ओल्फैक्टरी कॉर्टेक्स तथा ऐमिग्डाल. पॉल मैक्लीन ने ट्रियून मस्तिष्क सिद्धांत के भाग के रूप में जाना कि लिम्बिक संरचना में भावनाओं का तंत्रिका आधार सम्मिलित है. कुछ तंत्रिका वैज्ञानिक अब एकीकृत "लिम्बिक प्रणाली" की अवधारणा में विश्वास नहीं करते हैं.[34] हालांकि हिप्पोकैम्पस शरीर-रचना विज्ञान के अनुसार मस्तिष्क के उन भागों से, जो भावनात्मक व्यव्हार से सम्बंधित हैं, से जुड़ा हुआ है - सेप्टम, हाइपोथेलामिक मैमेलरी बॉडी तथा थैलामस में स्थित एंटेरिअर न्यूक्लिअर कॉम्प्लेक्स, इसलिए लिम्बिक प्रणाली में इसकी भूमिका से इनकार नहीं किया जा सकता है.

सम्पूर्ण आकार में हिप्पोकैम्पस एक मुड़ी हुई नली जैसा होता है, जिसका आकार एक समुद्री घोड़े, भेड़ के सींग (कोर्नु एम्मोनिस, इसीलिए इसके उपभाग सीए1 से सीए4 हैं), अथवा केले के सदृश माना गया है.[33] यह विशिष्ट रूप से एक ऐसे क्षेत्र के रूप में देखा जा सकता है जहाँ कॉर्टेक्स पतली होकर पिरामिड आकर के न्युरोनों की एक सघन पर्त के रूप में हो बदल जाती है, जिसकी मोटाई चूहों में 3 से 6 कोशिकाओं तक हो सकती है और जो अंग्रेजी के U के आकार में मुड़ी होती है; U के किनारे पर सीए4 क्षेत्र पीछे की तरफ मुड़ा हुआ, सुदृढ़ रूप से मुड़ी हुई V आकार की कोर्टेक्स के रूप में अंतःस्थापित होता है, जिसे देन्ताते जाइरस कहते हैं. इसमें वेंट्रल व डोर्सल भाग होते हैं, जिनके संघटक सामान ही होते हैं परन्तु वे न्युरौनों के अलग-अलग परिपथों के भाग होते हैं.[35] यह सामान्य अभिन्यास सभी स्तनधारियों में लगभग एक सा ही होता है, सही से लेकर मनुष्यों तक, हालांकि इनके विस्तृत वर्णन भिन्न होते हैं. चूहे में, दोनों हिप्पोकैम्पी केले की एक जोड़ी जैसे लगते हैं, जो मूल पर हिप्पोकैम्पल संयोजिका से जुड़ते हैं तथा जो एंटेरिअर कॉर्पस कैलोसम के भीतर तक जाती है. मानव या बंदरों के मस्तिष्क में नीचे के तरफ के हिप्पोकैम्पस के भाग, जो कि टेम्पोरल लोब के आधार की तरफ होते हैं, ऊपर के भागों की तुलना में अधि चौड़े होते हैं. इस जटिल ज्यामिति के परिणामों में से एक यह है कि हिप्पोकैम्पस में की गयी अनुप्रस्थ काट विभिन्न आकारों को प्रदर्शित कर सकती है, हालांकि यह काट के कोण व स्थिति पर भी निर्भर करता है.

सैंटियागो रेमन वाई केजल द्वारा अन्कित हिप्पोकैम्पस का मूल सर्किट.डीजी: देंताते जाइरस.सब: सबिकुलमईसी: एंटोराईनल कॉर्टेक्स

पैराहिप्पोकैम्पल जाइरस में स्थित एंटोराइनल कॉर्टेक्स (EC) को शरीर-रचना विज्ञान के ताने-बाने के कारण हिप्पोकैम्पल क्षेत्र का भाग ही माना जाता है. ईसी (EC) दृढ़ता से सेरेब्रल कॉर्टेक्स के कई अन्य भागों के साथ जुड़ा हुआ होता है. इसके अतिरिक्त, मेडियल सेप्टल न्यूक्लियस, एंटेरिअर न्यूक्लियस कॉम्प्लेक्स तथा थैलामस के न्यूक्लियस रियूनियन एवं हाइपोथैलामस के सुप्रामैमिलारी न्यूक्लियस तथा इनके साथ ही साथ मस्तिष्क आधार में रेफ न्यूक्ली व लोकस कोर्युलस भी ईसी को एक्सोन भेजते हैं.ईसी के एक्सौनों की निकासी का मुख्य मार्ग (पर्फोरेंट पाथ, जिसका वर्णन सर्वप्रथम रेमन वाई कजल द्वारा किया गया) बड़ी स्टैलेट पिरामिड के अकार की कोशिकाओं से आता है जो कि लेयर II में होती हैं और सबिक्युलम को "भेदती" हैं व देन्ताते जाइरस में सघन रूप से विद्यमान कनिका रुपी कोशिकाओं को प्रोजेक्ट करती हैं, सीए3 के एपिकल डेन्ड्राइट को कम सघन प्रोजेक्शन प्राप्त होता है, तथा सीए1 के एपिकल डेन्ड्राइट बहुत कम प्रोजेक्शन प्राप्त कर पाते हैं. इस प्रकार पर्फोरेंट पाथ ईसी को मुख्य "इंटरफेस" के रूप में स्थापित करता है जो हिप्पोकैम्पस तथा सेरिब्रल कॉर्टेक्स के अन्य भागों के बीच कार्य करता है. देन्ताते की कणिका रुपी कोशिका एक्सौन (जिसे मौसी तंतु भी कहते हैं) सूचनाओं को ईसी से कांटेदार स्पाइनों से होकर, जो सीए3 पिरामिड के आकार की कोशिकाओं के प्रौक्सिमल एपिकल डेन्ड्राइट से होकर निकलती हैं, ले जाती है. इसके बाद सीए3 एक्सौन कोशिकाओं से बाहर आकर उस क्षेत्र में, जहां एपिकल डेन्ड्राइट पाए जाते हैं, चक्कर काटते रहते हैं और फिर बढ़ कर वे एंटोराइनल कॉर्टेक्स की गहरी परतो तक जाते हैं - शाफर कोलेटरल इसका व्युत्क्रम चक्र पूर्ण करते हैं; सीए1 क्षेत्र से एक्सौन वापस ईसी तक भेजे जाते हैं, परन्तु ये सीए3 की तुलना में बहुत कम होते हैं. हिप्पोकैम्पस के भीतर ईसी द्वारा भेजी गयी सूचनाओं की दिशा एकल-दिश होती है, सिग्नल कोशिका की सघन परतों में से प्रसारित होते हैं, सर्वप्रथम दन्ताते जाइरस को, उसके बाद सीए3 पर्त को, फिर सीए1 पर्त को उसके बाद सबिकुलम और फिर हिप्पोकैम्पस के बाहर ईसी को और ऐसा मुख्य रूप से सीए3 एक्सौनों के पास-पास होने के कारण होता है. इन सभी परतों में जटिल आतंरिक परिपथ तथा वृहद क्षैतिज संयोजन होते हैं.[33]

कई अन्य संयोजन हिप्पोकैम्पस के प्रकार्य में प्रमुख भूमिका निभाते हैं.[33] ईसी को आउटपुट देने के अतिरिक्त अन्य आउटपुट मार्ग अन्य कौर्टिकल क्षेत्रों को भी जोड़ते हैं जिनमें प्रीफ्रंटल कॉर्टेक्स शामिल है. एक बहुत महत्वपूर्ण व बड़ा आउटपुट लेटरल सेप्टल क्षेत्र तथा हाइपोथैलामस की मैमेलरी बॉडी को भी जाता है. हिप्पोकैम्पस के क्षेत्र सीए1 को विभिन्न प्रभागों जैसे सेरोटोनिन, नोरपाइनफ्रीन व डोपामाइन प्रणाली तथा थैलामस के न्यूक्लियस रीयुनिएंस से भी इनपुट प्राप्त होता है. एक बहुत महत्वपूर्ण प्रक्षेपण मेडियल सेप्टल क्षेत्र से आता है जो कोलीनर्जिक व गाबार्जिक तंतु हिप्पोकैम्पस के सभी हिस्सों में भेजता है. सेप्टल क्षेत्र से आने वाला इनपुट हिप्पोकैम्पस की शारीरिक स्थिति के नियंत्रण में प्रमुख भूमिका निभाता है: सेप्टल क्षेत्र के नष्ट हो जाने से हिप्पोकैम्पस की थीटा लय नष्ट हो जाती है तथा कुछ प्रकार की स्मृतियों पर गंभीर रूप से प्रतिकूल प्रभाव पड़ता है.[36]

हिप्पोकैम्पस के निकट स्थित कोर्टिकल क्षेत्र को सामूहिक रूप से पैराहिप्पोकैम्पल जाइरस (अथवा पैराहिप्पोकैम्पस) कहते हैं.[37] इनमें ईसी तथा पेरीराइनल कोर्टेक्स भी शामिल हैं, इसका नाम इस तथ्य पर आधारित है कि यह राइनल सल्कस के निकट पाया जाता है. पेरीराइनल कोर्टेक्स जटिल वस्तुओं की दृष्टि द्वारा पहचान करने में महत्वपूर्ण भूमिका निभाता है, परन्तु साथ ही यह प्रमाण भी हैं कि यह स्मृति में भी योगदान देता है और यह योगदान हिप्पोकैम्पस के योगदान से भिन्न है, तथा सम्पूर्ण एम्नेसिया के लिए हिप्पोकैम्पस तथा पैराहिप्पोकैम्पस, दोनों का ही क्षतिग्रस्त होना आवश्यक है.[37]

फिज़ियोलौजी[संपादित करें]

चूहे के हिप्पोकैम्पस में ईईजी तथा सीए1 न्यूरल गतिविधियां थीटा (जगा हुआ/व्यवहार करता हुआ) तथा एलआईए (निम्न-तरंग निद्रा) मोड में.प्रत्येक प्लॉट 20 सेकण्ड के आंकड़े प्रस्तुत करता है, हिप्पोकैम्पस का ईईजी ट्रेस सबसे ऊपर है, 40 सीए1 पिरामिड आकार की कोशिकाओं से एक साथ एकत्रित किये गए स्पाइक रास्टर मध्य में हैं (प्रत्येक रास्टर रेखा एक अलग कोशिका को दर्शाती है), दौड़ने की गति का प्लॉट सबसे नीचे दिया गया है.शीर्ष में दिया गया प्लॉट उस समय अंतराल को प्रदर्शित करता है जिसमें चूहा सक्रिय रूप से फैले हुए भोजन को ढूंढ रहा था.सबसे नीचे के प्लॉट में चूहा निद्रा में था.

हिप्पोकैम्पस गतिविधि के दो "मोड" प्रदर्शित करता है, जिनमें से प्रत्येक न्यूरल संख्या गतिविधि के एक विशिष्ट स्वरुप से तथा विद्युतीय गतिविधि की तरंगों से सम्बंधित होता है तथा जिसे इलेक्ट्रोएंकेफैलोग्राम (EEG) की सहायता से मापा जा सकता है. इन दोनों मोड को उनसे सम्बंधित ईईजी स्वरूपों पर नाम दिया गया है: थीटा व लार्ज इर्रेगुलर एक्टिविटी (LIA). नीचे वर्णित मुख्य विशेषतायें चूहे के लिए हैं, जो कि ऐसा जंतु है जिसका अध्ययन सर्वाधिक किया जा सका है.[38]

थीटा मोड सक्रिय, चौकन्ने व्यवहार (विशेष रूप से घुमते समय) के दौरान प्रदर्शित होता है, यह आरईएम (स्वप्न) नींद के दौरान भी होता है.[39] थीटा मोड में, ईईजी बड़ी तथा नियमित तरंगों से आच्छादित होता है जिनकी आवृत्ति सीमा 6 से 9 हर्ट्ज़ होती है, तथा हिप्पोकैम्पस न्युरौनों के प्रमुख समूह (पिरामिड आकार की कोशिकाएं व कणिका आकार की कोशिकाएं) कम घनत्व की गतिविधि प्रदर्शित करती हैं, इसका अर्थ यह हुआ कि समय के किसी भी छोटे अंतराल में अधिकांश कोशिकाएं शांत होती हैं, जबकि बची हुई कोशिकाएं अपेक्षाकृत उच्च स्तर पर उत्सर्जन करती हैं, जिनमें से सर्वाधिक सक्रिय कोशिकाएं 50 स्पाइक प्रति सेकण्ड तक उत्सर्जित कर देती हैं. एक सक्रिय कोशिका आमतौर पर आधे सेकण्ड से लेकर कुछ सेकेंडों तक सक्रिय रहती है. चूहे के व्यवहार के अनुरूप ही सक्रिय कोशिकाएं शांत हो जाती हैं तथा नयी कोशिकाएं सक्रिय हो जाती हैं, परन्तु सक्रिय कोशिकाओं का समग्र प्रतिशत लगभग एक समान ही रहता है. कई स्थितियों में, कोशकीय गतिविधि मुख्यतः जंतु की स्थानिक अवस्थिति द्वारा निर्धारित होती है तथापि अन्य व्यावहारिक चर भी इसे अवश्य ही प्रभावित कर सकते हैं.

एलआईए मोड मंद (बिना स्वप्न के) निद्रा तथा जगे होने पर बिना गतिविधि की स्थिति में प्रकट होता है, जैसे विश्राम तथा भोजन करते समय.[39] एलआईए मोड में ईईजी तीव्र तरंगों से आच्छादित रहता है, जो अनियमित समय पर ईईजी सिग्नल के विक्षेपण होते हैं तथा 200-300 मिली सेकण्ड तक रहते हैं. ये तीव्र तरंगें जनसंख्या की न्यूरल गतिविधि स्वरूप को भी दर्शाती हैं. इन सब के बीच पिरामिड आकार तथा कणिका आकार की कोशिकाएं बहुत शांत (परन्तु पूरी तरह मौन नहीं) रहती हैं. इन तीव्र तरंगों के दौरान कुल न्युरौनों के 5-10% तक एक्शन पोटेंशियल उत्सर्जित करते हैं जो कि 50 मिली सेकण्ड की अवधि में हो जाता है; इनमें से बहुत सी कोशिकाएं कई एक्शन पोटेंशियल उत्सर्जित कर देती हैं.

हिप्पोकैम्पस की गतिविधियों के ये दोनों मोड चूहों के साथ ही साथ वानरों में भी पाए जाते हैं, एक अपवाद यह है कि वानर हिप्पोकैम्पस में सुदृढ़ थीटा रिदमिसिटी को अवलोकित करना कठिन है. हालांकि गुणवत्ता के आधार पर उनमें भी मिलती-जुलती तीव्र तरंगें तथा मिलती-जुलती स्थिति आश्रित गतिविधि देखी गयी हैं.[40]

थीटा रिद्म[संपादित करें]

अपनी सघन न्यूरल परतों के कारण हिप्पोकैम्पस, किसी भी अन्य मस्तिष्क संरचना की तुलना में, अधिक तीव्र ईईजी सिग्नल उत्पन्न करता है. कुछ स्थितियों में ई ईजी ये सबथ्रेशहोल्ड मेम्ब्रेन पोटेंशियल्स को प्रतिबिंबित करती हैं तथा हिप्पोकैम्पस के न्यूट्रौनों की स्पाइकिंग को दृढ़ता से मॉड्यूलेट करती हैं, तथा पूरे हिप्पोकैम्पस को चलती हुई तरंग की तरह तालमेल में लाती हैं.[41] इस ईईजी स्वरुप को थीटा रिद्म कहते हैं.[42] थीटा रिद्म खरगोश और क्रिन्तकों में बहुत स्पष्ट होती है तथा बिल्लियों व कुत्तों में भी देखी जा सकती है. क्या थीटा को वानरों में भी देखा जा सकता है, यह एक अप्रिय प्रश्न है.[43] चूहों में (वह जंतु जिसका सबसे व्यापक रूप से अध्ययन किया गया है), थीटा को मुख्य रूप से दो स्थितियों में देखा जाता है: पहला, जब जंतु चल रहा हो अथवा किसी अन्य रूप में अपने आस-पास की चीजों से सक्रिय रूप से क्रियाशील हो; दूसरा, आरईएम निद्रा के दौरान.[44] थीटा के प्रकार्य को पूरी तरह संतोषपूर्ण रूप से नहीं समझाया जा सका है, हालांकि इस विषय में बहुत से सिद्धांत प्रतिपादित किये गए हैं.[38] सबसे लोकप्रिय परिकल्पना में इसको सीखने और स्मृति से संबंधित किया गया है. उदाहरण के लिए, वह चरण जिसमें थीटा न्युरौन को उत्तेजित करते समय इस उत्तेजना के प्रभाव में सूत्र-युग्मन करते हैं और इसके परिणामस्वरुप सिनाप्टिक प्लास्टीसिटी आधारित सीखने और स्मृति प्रभावित होते हैं.[45] यह पूरी तरह से सिद्ध किया जा चुका है कि मेडियल सेप्टम को क्षति से - जो कि थीटा प्रणाली का केन्द्रीय बिंदु है - स्मृति में गंभीर दुष्प्रभाव पड़ते हैं. हालांकि, मेडियल सेप्टम थीटा के निरंत्रक होने मात्र से कहीं अधिक महत्वपूर्ण है, यह हिप्पोकैम्पस को होने वाले कोलिनर्जिक प्रोजेक्शन का मुख्य स्रोत है.[33] यह सिद्ध नहीं हुआ है कि सेप्टल को होने वाली क्षति के प्रभावस्वरुप विशेष रूप से थीटा रिद्म बिगड़ जाती हो.[46]

तीव्र तरंगें[संपादित करें]

नींद के दौरान, अथवा नींद खुलने के दौरान की स्थितियों में, जब पशु विश्राम कर रहा हो अथवा अपने आस-पास की वस्तुओं में व्यस्त न हो, हिप्पोकैम्पस के ईईजी में अनियमित धीमी तरंगों का स्वरुप दिखाई देता है, जो कि आयाम में थीटा तरंगों से बड़ी होती हैं. यह स्वरुप कभी-कभी बहुत बड़े सर्ज के द्वारा अवरोधित हो जाता है, जिसे तीव्र तरंगें (sharp waves) कहते हैं.[47] ये घटनाएं अति तीव्र स्पाइक गतिविधि के साथ होती हैं, जो 50 से 100 मिली सेकण्ड की होती हैं तथा ये सीए3 व सीए4 की पिरामिड आकार की कोशिकाओं में होती हैं. वे बहुत कम समय के लिए दिखने वाली उच्च आवृत्ति के ईईजी दोलनों से भी जुडी होती हैं जिन्हें "रिपल" कहा जाता है, चूहों में यह आवृत्ति 150-200 हर्ट्ज़ की होती है. तीव्र तरंगें सबसे अधिक तब दिखती हैं जब पशु निद्रा में होता है, वे औसत 1 बार पार्टी सेकण्ड तक दिखती हैं (चूहों में), परन्तु उनका टेम्पोरल स्वरुप बहुत अनियमित होता है. तीव्र तरंगें असक्रिय जाग्रत अवस्था में कम दिकाई देती हैं, तथा ऐसे में वे छोटी भी होती हैं. तीव्र तरंगें मानव और बंदरों में भी देखी जाती हैं. मकाउ में, तीव्र तरंगें सुदृढ़ होती हैं परन्तु उनकी आवृत्ति चूहों जितनी नहीं होती है.[40]

तीव्र तरंगों का एक दिलचस्प पहलू यह है कि वे स्मृति से सम्बद्ध प्रतीत होती हैं. विल्सन और मैकनॉटन 1994,[48] तथा अन्य बहुत से अध्ययनों में पता चला कि जब हिप्पोकैम्पस की स्थानिक कोशिकाएं स्थानिक उत्सर्जन क्षेत्रों के साथ अतिव्यापित होती हैं, (और इसीलिए अक्सर वे लगभग उत्तेजित रूप में उत्सर्जन करती हैं), वे व्यावहारिक सत्र के बाद निद्रा के दौरान सहसम्बन्धित गतिविधि प्रदर्शित करती हैं. सहसंबंध की यह वृद्धि, जिसे आम तौर पर रिएक्टिवेशन (reactivation) के रूप में जाना जाता है, तीव्र तरंगों के दौरान होती पायी जाती हैं.[49] ऐसा प्रस्तावित किया गया कि ये तीव्र तरंगें वास्तव में न्यूरल गतिविधियों का रिएक्टिवेशन होता है जो व्यवहार के दौरान स्मृति में शामिल हुईं थीं, ये हिप्पोकैम्पस के अन्दर सिनैप्टिक सुधारों के द्वारा चालित होती हैं.[50] यह विचार "दो स्तरों की स्मृति" सिद्धांत का मुख्य तत्व बनता है, जिसका अनुमोदन बुज़स्की तथा अन्य ने किया था, इस सिद्धांत के अनुसार व्यवहार के दौरान स्मृतियां हिप्पोकैम्पस में रहती हैं और बाद में निद्रा के दौरान निओकॉर्टेक्स में स्थानांतरित हो जाती हैं: तीव्र तरंगें हेबियन सिनैपटिक परिवर्तन को चालित करती हैं जो हिप्पोकैम्पस के आउटपुट मार्ग में निओकॉर्टिकल लक्ष्य पर जाती हैं.[51]

दीर्घकालिक पोटेनशियेशन[संपादित करें]

कम से कम रेमन वाई केजाल के समय से ही मनोवैज्ञानिक यह अनुमान लगा रहे थे मस्तिष्क स्मृति का भण्डारण समसामयिक रूप से सक्रिय न्युरौनों के बीच संपर्क की शक्ति को परिवर्तित करके करता है.[52] यह विचार 1948 में डोनाल्ड हेब द्वारा औपचारिक किया गया,[53] परन्तु कई वर्षों के बाद ऐसे परिवर्तनों के लिए मस्तिष्क की कार्यप्रणाली पता नहीं चल पायी. 1973 में, टिम ब्लिस तथा टेर्जे लोमो ने खरगोश के हिप्पोकैम्पस में होने वाली एक घटना की व्याख्या की जिसने हेब के वर्णन को सही ठहराया: सिनाप्टिक प्रतिक्रियाशीलता में परिवर्तन जो छोटे समय तक परन्तु शक्तिशाली सक्रियण द्वारा प्रेरित था और कई घंटों, दिनों अथवा इससे भी ज्यादा समय तक बना रहा.[54] इस घटना का नामकरण लौंग टर्म पोटेंशियेशन अथवा एलटीपी (LTP) किया गया.स्मृति के लिए प्रस्तावित कई धारणाओं में से एक, एलटीपी का गहन अध्ययन कई वर्षों तक किया गया और इसके बारे में बहुत सी जानकारी एकत्रित की गयी.

हिप्पोकैम्पस एलटीपी के अध्ययन के लिए विशेष रूप से उपयुक्त था क्योंकि इसमें न्युरौनों की सघन तथा स्पष्ट परतें थीं, परन्तु अब इस प्रकार के अनेक गतिविधि-निर्भर सिनेप्टिक परिवर्तन मस्तिष्क के कई भागों में देखे जा सकते हैं.[55] एलटीपी का सबसे अधिक अध्ययन किया गया रूप सिनाप्सेस में होता है जो डेंड्राइटिक स्पाइन में समाप्त होता है तथा ट्रांसमीटर ग्लूटामेट का प्रयोग करता है. हिप्पोकैम्पस के कई प्रमुख मार्ग इस वर्णन में सही बैठते हैं और एलटीपी प्रदर्शित करते हैं.[56] सिनाप्टिक परिवर्तन विशेष प्रकार के ग्लूटामेट रिसेप्टर पर निर्भर करते हैं, जिसे एनएमडीए रिसेप्टर (NMDA) कहते हैं, इसका एक विशेष गुण यह होता है कि यह कैल्शियम को पोस्टसिनेप्टिक स्पाइन में सिर्फ तब प्रवेश करने देता है जब प्रीसिनेप्टिक सक्रियण व पोस्टसिनेप्टिक डिपोलराइज़ेशन एक ही समय में होता है.[57] ऐसी दवाएं जो एनएमडीए रिसेप्टर में हस्तक्षेप करती हैं, एलटीपी को भी अवरुद्ध कर देती हैं तथा कुछ प्रकार की स्मृतियों पर भी प्रभाव डालती हैं, विशेष रूप से स्थानिक स्मृति. ट्रांसजेनिक चूहे, जिन्हें आनुवंशिक रूप से संशोधित किया जाता है कि इनमें एलटीपी प्रक्रिया असमर्थ कर दी जाती है, आमतौर पर गंभीर स्मृति दोष प्रदर्शित करते हैं.[57]

पैथोलॉजी[संपादित करें]

आयुर्वृद्धि[संपादित करें]

आयु-संबंधी समस्याएं जैसे अल्ज़ाइमर रोग (जिसके लिए हिप्पोकैम्पस की कार्यप्रणाली में व्यवधान प्रथम लक्षणों में से एक है[58]) का अनेकों प्रकार के संज्ञान पर गहरा प्रभाव पड़ता है लेकिन सामान्य, स्वस्थ आयुर्वृद्धि में लोगों में भी धीरे-धीरे कुछ प्रकार की स्मृतियों में गिरावट आने लगती है, जिसमें प्रासंगिक स्मृति और क्रियाशील स्मृति दोनों ही शामिल होती हैं. चूंकि स्मृति के संबंध मे हिप्पोकैम्पस केन्द्रीय भूमिका निभाता है इसलिए यह सम्भावना भी पर्याप्त रूचि का कारण है कि स्मृति में आने वाली आयु-सम्बन्धी गिरावट हिप्पोकैम्पस की कार्यप्रणाली में गिरावट के कारण हो सकती है.[59] कुछ प्रारंभिक अध्ययनों से यह जानकारी मिली कि हिप्पोकैम्पस में अधिक आयु वाले लोगों में न्युरॉन्स काफी क्षति हो जाती है, लेकिन बाद के अध्ययनों में जो और भी अधिक सूक्ष्म तकनीक का प्रयोग कर रहे थे उनमे यह पता चला कि इन दोनों के बीच बहुत ही सूक्ष्म अंतर है.[59] इसी प्रकार कुछ एमआरआई (MRI) अध्ययनों से यह पता चला है कि अधिक आयु वाले लोगों में हिप्पोकैम्पस संकुचित हो जाता है लेकिन अन्य अध्ययन इस तथ्य को पुनः प्रस्तुत करने में असमर्थ रहे. हालांकि, हिप्पोकैम्पस के आकार और स्मृति की कार्य क्षमता के मध्य विश्वसनीय सम्बन्ध है- अर्थात सभी अधिक आयु वाले लोगों में हिप्पोकैम्पस संकुचित नहीं होता लेकिन जिनमे ऐसा होता है उनके कुछ स्मृति संबंधी कार्यों के प्रदर्शन में कमी आ जाती है.[60] इस बात की भी जानकारी मिली है कि अधिक आयु वाले लोगों में हिप्पोकैम्पस संबंधी सक्रियण युवाओं की अपेक्षा कम होता है.[60]

चूहों में, जिनके सम्बन्ध में कोशिकीय शरीरविज्ञान का विस्तृत अध्ययन उपलब्ध है, आयु बढ़ने के साथ हिप्पोकैम्पस में अधिक कोशिका क्षति नहीं होती लेकिन इसके कारण उनमें सूत्रयुग्मक संपर्क कई प्रकार से परिवर्तित हो जाते हैं.[61] क्रियात्मक सूत्रयुग्मक देंताते जाइरस और सीए1 (CA1) क्षेत्र में लुप्त हो जाते हैं और एनएमडीए (NDMA) अभिग्राहक मध्यस्थता वाली प्रतिक्रियाएं भी कम हो जाती हैं. यह परिवर्तन दीर्घकालिक पोटेनशियेशन के प्रेरण और रखरखाव में हानि पहुंचा सकते हैं, जो एक प्रकार की सूत्रयुग्मक प्लास्टीसिटी है जिसके सम्बन्ध में स्मृति में संकेत किया गया था. सूत्रयुग्मक प्लास्टीसिटी से जुड़े कई जींस में हिप्पोकैम्पस सम्बंधित एक्स्प्रेशन में आयु-संबंधी गिरावट आ जाती है.[62] अंततः, इनमे "प्लेस सेल" के प्रदर्शन स्थायित्व में भी अंतर आ जाता है. युवा चूहों में, उन्हें दूसरे वातावरण में ले जाये जाने पर आम तौर पर प्लेस फील्ड की व्यवस्था बदल जाती है लेकिन यदि चूहे को किसी ऐसे वातावरण में वापस ले जाया जाये जहां वह पहले भी आ चुके हैं तो यह व्यवस्था पहले के सामान ही बनी रहती है. अधिक आयु वाले चूहों में अक्सर प्लेस फील्ड "रीमैप" तब असफल हो जाता हैं जब चूहे को भिन्न वातावरण में ले जाया जाता है और चूहे को उसी वातावरण में वापस लाने पर भी प्रायः यह अपनी वास्तविक व्यवस्था के समायोजन में असफल हो जाता हैं.

तनाव[संपादित करें]

हिप्पोकैम्पस में ग्लुकोकौर्टिकॉयड अभिग्राहक काफी मात्रा में विद्यमान होते हैं जो दीर्घकालिक तनाव के प्रति इन्हें मस्तिष्क के अन्य भागों की अपेक्षा अधिक संवेदनशील बना देते हैं.[63] तनाव-संबंधी स्टीरॉयड कम से कम तीन प्रकार से हिप्पोकैम्पस को प्रभावित करते हैं: पहला, हिप्पोकैम्पस के कुछ न्युरॉनों की उत्तेजनशीलता को कम कर देते हैं; दूसरे यह देंताते जाइरस में नए न्युरॉनों की उत्पत्ति में बाधा डालते हैं; तीसरा यह सीए3 क्षेत्र की पिरामिडीय कोशिकाओं में डेंड्राइट्स का अपक्षय करते हैं. इस बात के प्रमाण उपलब्ध हैं कि वे मुष्य जिन्होंने दीर्घकालिक अभिघताज तनाव का अनुभव किया है, उनमे मष्तिष्क के किसी अन्य हिस्से की अपेक्षा हिप्पोकैम्पस का अपक्षय अधिक होता है.[64]. यह प्रभाव पोस्ट-ट्रौमैटिक विकार में दिखायी पड़ते हैं और ये सिज़ोफ्रेनिया और गंभीर तनाव में होने वाले हिप्पोकैम्पस अपक्षय का कारण भी बन सकते हैं. हाल में हुए एक अध्ययन में यह प्रकट हुआ है कि अपक्षय तनाव के फलस्वरूप होता है लेकिन इसे एंटी-डिप्रेसेंट के द्वारा रोका जा सकता है, चाहे वह एंटी-डिप्रेसेंट अन्य लक्षणों से आराम दिला पाने में प्रभावकारी हो या न हो.[65] हिप्पोकैम्पस अपक्षय अक्सर कुशिंग्स सिंड्रोम में भी देखा जाता है, कुशिंग सिंड्रोम एक प्रकार का विकार है जो रक्त में कौर्टिसॉल की अधिक मात्र के कारण होता है. यदि तनाव निरंतर न रहा हो तो इस अवस्था में इनमे से कम से कम कुछ प्रभाव उत्क्रमणीय दिखायी पड़ते हैं. हालांकि, मुख्यतः चूहों से सम्बंधित अध्ययनों द्वारा यह प्रमाण प्राप्त हुआ है कि जन्म के कुछ ही समय बाद होने वाला तनाव हिप्पोकैम्पस की कार्य प्रणाली को इस प्रकार प्रभावित कर सकता है कि वह लक्षण आजीवन बने रह सकते हैं.[66]

मिर्गी (एपिलेप्सी)[संपादित करें]

प्रायः हिप्पोकैम्पस ही मिर्गी के दौरों का प्रमुख केंद्र होता है: टेम्पोरल लोब एपिलेप्सी में हिप्पोकैम्पल स्केलेरौसिस आम तौर पर सबसे अधिक दिखायी पड़ने वाले ऊतक क्षय का प्रकार है.[67] हालांकि, यह अभी भी स्पष्ट नहीं है कि हिप्पोकैम्पस की कार्यप्रणाली की अनियमितता के कारण मिर्गी होती है या मिर्गी के इन दौरों के संचयी प्रभाव के कारण हिप्पोकैम्पस क्षतिग्रस्त होता है.[68] एक प्रयोगात्मक व्यवस्था, जहां जानवरों में कृत्रिम रूप से बार बार ये दौरे प्रेरित किये जाते हैं, में प्रायः परिणामस्वरूप हिप्पोकैम्पस क्षतिग्रस्त हो जाता है: इसके पीछे यह कारण हो सकता है कि हिप्पोकैम्पस विद्युतीय रूप से मष्तिष्क का सर्वाधिक उत्तेजित होने वाला भाग है. इसका सम्बन्ध इस तथ्य से भी हो सकता है कि हिप्पोकैम्पस मष्तिष्क के उन कुछ क्षेत्रों में से है जहां आजीवन नए न्यूरॉनों का निर्माण होता रहता है.[69]

सिज़ोफ्रेनिया[संपादित करें]

सिज़ोफ्रेनिया के होने के कारण बिलकुल भी स्पष्ट ढंग से नहीं समझे गए हैं लेकिन मष्तिष्क की संरचना से सम्बंधित अनेकों अनियमितताओं के होने की जानकारी मिली है. सर्वाधिक सूक्ष्मता के साथ जांचे गए परिवर्तनों में सेरेब्रल कॉर्टेक्स शामिल है लेकिन हिप्पोकैम्पस पर भी इसके प्रभावों का वर्णन किया गया है. कई रिपोर्ट में सिज़ोफ्रेनिया से ग्रस्त व्यक्ति के हिप्पोकैम्पस के आकार में कमी भी देखी गयी है.[70] संभवतः यह परिवर्तन ऊतकों के क्षतिग्रस्त होने की बजाय परिवर्तित विकासों के कारण होते हैं और उन व्यक्तियों में भी दिखायी पड़ते हैं जिन्हें कभी इसके लिए दवा नही दी गयी. विभिन्न प्रकार के प्रमाण सूत्रयुग्मक संगठन और संपर्क में परिवर्तन की ओर संकेत करते हैं.[70] यह स्पष्ट नहीं है कि हिप्पोकैम्पस में होने वाले परिवर्तन मानसिक रुग्णता, जोकि सिजोफ्रेनिया का प्रमुख लक्षण है, के लक्षणों को पैदा करने में कोई भूमिका निभाते हैं या नहीं. जानवरों पर हुए शोध कार्य के आधार पर एंथनी ग्रेस और उनके सहकर्मचारियों ने यह सुझाव दिया कि, हिप्पोकैम्पस के सामान्य रूप से कार्य न करने की क्रिया के फलस्वरूप बैसल गैन्ग्लिया में डोपामाइन स्त्राव में बदलाव हो सकता है, जिससे प्रीफ्रंटल कॉर्टेक्स में सूचनाओं का एकीकरण अप्रत्यक्ष रूप से प्रभावित होगा.[71] अन्य ने यह सुझाव दिया कि हिप्पोकैम्पस द्वारा असामान्य रूप से क्रिया करना, दीर्घकालिक स्मृति में गड़बड़ी का कारण बन सकता है, जोकि प्रायः सिज़ोफ्रेनिया से ग्रस्त लोगों में देखी जा सकती है.[72]

ट्रांज़िएंट ग्लोबल एम्नेसिया[संपादित करें]

ट्रांज़िएंट ग्लोबल एम्नेसिया - अस्थायी अकस्मात् नाटकीय रूप से लघुकालिक स्मृति का लगभग पूर्णरूप से खोना - के होने की एक वर्तमान अवधारणा के अनुसार यह मष्तिष्क की उन शिराओं में संकुलन के कारण हो सकता है[73] जो संरचना के स्चीमिया तक पहुंचती हों, विशेषरूप से, वे हिप्पोकैम्पस जो समृति के लिए उत्तरदायी हैं.[74]

विकास[संपादित करें]

आमतौर पर सभी स्तनधारियों में हिप्पोकैम्पस एक ही जैसा दिखता है एचिद्ना जैसे अंडे देने वाले स्तनपयियों से लेकर मानवों जैसे प्राथमिक आदिमों तक में.[75] हिप्पोकैम्पस में शरीर के आकर के आधार पर इसके आकार का अनुपात स्थूलता के साथ बढ़ता है, यह एचिद्ना की तुलना में प्राथमिक आदिमों में लगभग दुगने आकर का होता है. हालांकि फिर भी यह किसी भी प्रकार से उस अनुपात में नहीं बढ़ता जिस अनुपात में यह वृद्धि नियोकॉर्टेक्स में होती है. इसलिए हिप्पोकैम्पस, प्राथमिक आदिमों की तुलना में कृदंतकों में कॉटिर्कल आवरण का अधिक बड़ा हिस्सा आच्छादित कर लेता है. वयस्क मनुष्यों में, मष्तिष्क के दोनों और हिप्पोकैम्पस का फैलाव लगभग 3-3.5 सेमी 3 तक होता है, जबकि नियोकॉर्टेक्स में यह फैलाव 320-420 सेमी 3 तक होता है.[76]

हिप्पोकैम्पस के आकार और स्थानिक स्मृति के बीच भी एक सामान्य सम्बन्ध होता है. जब दो सामान प्रजातियों के बीच तुलना की जाती है, तो वह प्रजातियां जिनमे स्थानिक स्मृति संबंधी क्षमता अधिक होती है, उनके हिप्पोकैम्पस का फैलाव भी अधिक होता है.[77] यह सम्बन्ध लिंग के अंतर में भी लागू होता है: उन प्रजातियों में जहां स्थानिक स्मृति क्षमता के सम्बन्ध में नर और मादा के बीच काफी अंतर होता है, वह तदनुसार हिप्पोकैम्पस के फैलाव के अंतर को भी प्रदर्शित करते हैं.[78]

गैर-स्तनधारी प्रजातियों की मष्तिष्क संरचना स्तनधारियों के हिप्पोकैम्पस के समान नही होती लेकिन उनमे जो मष्तिष्क संरचना होती है वह स्तनधारियों के होमोलोगस (एक ही पूर्वज से जनित) होती है. हिप्पोकैम्पस, जैसा कि ऊपर बताया गया है, अनिवार्य रूप से कॉर्टेक्स का मध्यवर्ती सिरा होता है. केवल स्तनधारियों में ही पूर्ण विकसित कॉर्टेक्स होती है, लेकिन वह संरचना जिससे कि इसकी उत्पत्ति हुई है जिसे पैलियम कहते हैं, वह सभी रीढ़धारियों में पायी जाती है, यहां तक कि सबसे प्राथमिक स्तर के रीढ़धारियों जैसे लैम्प्रे या हैग्फिश में भी.[79] आम तौर पर पैलियम तीन हिस्सों में विभाजित होता है: मध्यवर्ती, पार्श्विक और पृष्ठीय. मध्यवर्ती पैलियम हिप्पोकैम्पस के पूर्ववर्ती भाग का निर्माण करता है. यह देखने में हिप्पोकैम्पस जैसा नहीं दिखता क्योंकि इसकी पर्तें S के आकर में विकृत नही होती हैं या देंताते जाइरस द्वारा निमग्न नहीं होती हैं, लेकिन गहरी रासायनिक और क्रियात्मक समानता के द्वारा इनकी होमोलौजी (एक ही जनक से उत्पत्ति) के संकेत मिलते हैं. अब इस बात के भी प्रमाण हैं कि ये हिप्पोकैम्पस जैसी संरचनाएं पक्षियों, सरिसृपों और मछलियों में स्थानिक स्मृति से भी सम्बंधित होती हैं.[80]

पक्षियों में यह तदनुरुपता इतनी स्पष्ट होती है कि शरीर रचना के कई विज्ञानी "एवियन हिपोकैम्पस" नाम के द्वारा मध्यवर्ती पैलियल हिस्से की ओर संकेत करते हैं.[81] पक्षियों की कई प्रजातियों में विशिष्ट स्थानिक कौशल होता है, मुख्यतः उनमे जो भोजन का भण्डारण करते हैं. इस बात के भी प्रमाण मौजूद हैं कि भोजन का भण्डारण करने वाले पक्षियों में अन्य प्रकार के पक्षियों की तुलना में हिप्पोकैम्पस का आकर बड़ा होता है और हिप्पोकैम्पस में होने वाली क्षति से इनमे स्थानिक स्मृति क्षतिग्रस्त हो जाती है.[82]

मछलियों के सम्बन्ध में यह तथ्य और भी जटिल है. टेलेओस्ट मछली में (जो वर्तमान प्रजातियों में बहुतायत में हैं), मष्तिष्क का अग्रसिरा अन्य रीढ़धारियों की तुलना में विकृत होता है: अधिकांश न्यूरो शरीर रचना विज्ञानियों का यह मानना है कि टेलेओस्ट मछलियों के मष्तिष्क का अग्रसिरा इसलिए आवश्यक रूप से मुड़ा हुआ होता है, जैसे कि एक मोज़े के अंदरूनी हिस्से को बाहर मोड़ दिया जाये, जिससे कि अधिकतर रीढ़धारियों के आतंरिक सिरे की संरचनाएं जोकि निलय के ठीक बगल में स्थित होती हैं, वे टेलेओस्ट मछली में बहार की ओर पाई जायें, और इसका ठीक विपरीत भी सत्य होता है.[83] इसका एक परिणाम यह है कि एक आदर्श रीढ़धारी की मध्यवर्ती पैलियम ("हिप्पोकैम्पल" ज़ोन) एक आदर्श मछली की पार्श्विक पैलियम के तदनुरूप मानी जाती है. प्रयोगों के आधार पर यह दिखाया गया है की कई प्रकार की मछलियों (विशेषतः गोल्डफिश) में विशिष्ट स्थानिक कौशल क्षमताएं होती हैं, यहां तक कि जिस स्थान में वे रहती हैं उनक "संज्ञान आधारित मानचित्र" बनाए की प्रतिभा भी होती है.[77] यह इस बात का प्रमाण है कि पार्श्विक पैलियम में होने वाली क्षति से स्थानिक स्मृति को भी क्षति पहुंचती है.[84][85]

इस प्रकार, समुद्री जीवन के सम्बन्ध में हिप्पोकैम्पस क्षेत्र की भूमिका रीढ़धारियों की उत्पत्ति से भी काफी पहले प्रारंभ हुई मालूम पड़ती है, उन विखंडनों से भी प्राचीन जोकि सैकड़ों मिलियन वर्षों पूर्व हुए थे.[86] यह अभी तक ज्ञात नहीं है कि मध्यवर्ती पैलियम अन्य प्राथमिक रीढ़ धारियों में भी यही भूमिका निभाती है या नही. कुछ प्रकार के कीट और सीप जैसे औक्टोपस, में भी विशिष्ट स्थानिक कौशल और नौवहन क्षमताएं होती हैं, लेकिन यह स्तनधारियों की स्थानिक प्रणाली से अलग ढंग से कार्य करती हैं, इसलिए अभी भी यह सोचने के लिए कोई पर्याप्त कारण नहीं है कि इनकी उत्पत्ति एक ही स्रोत से हुई है; ना ही इनकी मष्तिष्क संरचनाओं में पर्याप्त समानता है जिससे कि इन प्रजातियों में "हिप्पोकैम्पस" जैसे किसी भी भाग की पहचान को सहायता मिल सके. हालांकि कुछ लोगों ने यह प्रस्ताव दिया है कि कीटों की खुम्बी रुपी संरचना की कार्यप्रणाली हिप्पोकैम्पस के सामान हो सकती है.[87]

नोट्स[संपादित करें]

  1. डूवेरनॉय, 2005
  2. ग्रॉस, 1993
  3. वेचस्लर, 2004
  4. फिंगर, पृष्ठ 183
  5. साइट पीएमआईडी (pmid) 690266
  6. इचेंबौम एट अल., 1991.
  7. वैंडरवुल्फ, 2001
  8. नाडेल एट अल., 1975
  9. ग्रे और मैकनॉटन, 2000
  10. बेस्ट एंड व्हाइट, 1999
  11. सकोविले और मिलनर, 1957
  12. एनवाई (NY) टाइम्स, 12-06-2008
  13. स्क्वायर, 2009
  14. स्क्वायर, 1992
  15. इचेंबौम और कोहेन, 1993
  16. ओ'कीफे और डोसट्रोव्सकी, 1971
  17. ओ'कीफे और नाडेल, 1978
  18. मोसर एट अल., 2008
  19. स्क्वायर और स्कैटर, 2002
  20. वैनएल्ज़केर एट अल., 2008.
  21. स्क्वायर और स्कैटर, 2002, अध्याय 1
  22. डायना एट अल., 2007
  23. मत्सुमारा एट अल., 1999
  24. रोल्स और जियांग, 2006
  25. एक्स्ट्रोम एट अल., 2003
  26. स्मिथ और मिज़ुमोरी, 2006
  27. ओ'कीफे और नाडेल
  28. चिऊ एट अल., 2004
  29. मॉरिस एट अल., 1982
  30. सोल्सटैड एट अल., 2008
  31. मैगौएर एट अल., 1998
  32. मैगौएर एट अल., 2000
  33. एमराल और लावेनेक्स, 2006
  34. कोटर और स्टेपहान, 1997
  35. मोसर एंड मोसर, 1998
  36. विंसन, 1978
  37. इचेंबौम एट अल., 2007
  38. बुज्साकी, 2006
  39. बुज्साकी एट अल., 1990
  40. स्कैग्स एट अल., 2007
  41. लुबेनोव और सिअपस, 2009
  42. बुज्साकी, 2002
  43. कैनटेरो एट अल., 2003
  44. वैंडरवुल्फ, 1969
  45. हुएरटा और लिसमन, 1993
  46. कहाना एट अल., 2001
  47. बुज्साकी, 1986
  48. विल्सन और मैकनॉटन, 1994
  49. जैक्सन एट अल., 2006
  50. सदरलैंड और मैकनॉटन, 2000
  51. बुज्साकी, 1989
  52. रेमन वाई काजल, 1894
  53. हेब, 1948
  54. ब्लिस और लोमो, 1973
  55. कुक और ब्लिस, 2006
  56. मलेंका और बियर, 2004
  57. नकाज़ावा एट अल ., 2004
  58. हैम्पेल एट अल., 2008
  59. प्रुल एट अल . 2000, पृष्ठ. 105
  60. प्रुल एट अल . 2000, पृष्ठ. 107
  61. रोसेंज़्विग और बार्न्स, 2003
  62. बर्क और बार्न्स, 2006
  63. जोएल्स, 2008
  64. फू एट अल, 2010
  65. कैम्पबेल और मैकक्वीन, 2004
  66. गार्सिया-सेगुरा, पीपी. 170-71
  67. चैंग और लोवेंस्टिन, 2003
  68. स्लोविटर, 2005
  69. कुरुबा एट अल., 2009
  70. हैरिसन, 2004
  71. गोटो और ग्रेस, 2008
  72. बोएर एट अल., 2007.
  73. लुईस, एस (1998). "एटियोलॉजी ऑफ़ ट्रांसिएंट ग्लोबल अम्नेसिया". द लैंसेट 352: 397.
  74. चुंग, सी. -पी.; सू, एचवाई (HY); चाव, एसी; चैंग, एफसी; शेंग, डब्ल्यूवाई (WY); हु, एचएच (HH) (2006). "डिटेक्शन ऑफ़ इंट्राक्रेनियल वेनस रेफलक्स इन पेशंट्स ऑफ़ ट्रांसिएंट ग्लोबल अम्नेसिया". न्यूरोलॉजी 66 (12): 1873.
  75. वेस्ट, 1990
  76. सुजुकी एट अल, 2005
  77. जेकब्स, 2003
  78. जेकब्स एट अल., 1990
  79. अबौइटिज़ एट अल., 2003
  80. रोड्रीगुएज़ एट अल., 2002
  81. कोलंबो और ब्रौडबेंट, 2000
  82. शेटेलवर्थ, 2003
  83. नियुवेंहुयस, 1982
  84. पोर्टावेला एट अल. 2002
  85. वर्गस एट अल., 2006
  86. ब्रोग्लियो एट अल . 2005
  87. मिज़ुनामी एट अल., 1998

सन्दर्भ[संपादित करें]

  • Aboitiz, F (2003). "The evolutionary origin of the mammalian isocortex: Towards an integrated developmental and functional approach". Behav. Brain Sciences. 26 (5): 535–52. PMID ref15179935 |pmid= के मान की जाँच करें (मदद). डीओआइ:10.1017/S0140525X03000128. नामालूम प्राचल |coauthors= की उपेक्षा की गयी (|author= सुझावित है) (मदद)
  • Amaral, D (2006). "Ch 3. Hippocampal Neuroanatomy". प्रकाशित Andersen P, Morris R, Amaral D, Bliss T, O'Keefe J (संपा॰). The Hippocampus Book. Oxford University Press. आई॰ऍस॰बी॰ऍन॰ 9780195100273. नामालूम प्राचल |coauthors= की उपेक्षा की गयी (|author= सुझावित है) (मदद)सीएस1 रखरखाव: एक से अधिक नाम: editors list (link)
  • Best PJ, White AM (1999). "Placing hippocampal single-unit studies in a historical context". Hippocampus. 9 (4): 346–51. PMID 10495017. डीओआइ:10.1002/(SICI)1098-1063(1999)9:4<346::AID-HIPO2>3.0.CO;2-3.
  • Bliss T, Lømo T (1973). "Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path". J Physiol. 232 (2): 331–56. PMC 1350458. PMID 4727084.
  • Boyer P, Phillips JL, Rousseau FL, Ilivitsky S (2007). "Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia". Brain Res Rev. 54 (1): 92–112. PMID 17306884. डीओआइ:10.1016/j.brainresrev.2006.12.008.सीएस1 रखरखाव: एक से अधिक नाम: authors list (link)
  • Broglio, C (2002). "Hallmarks of a common forebrain vertebrate plan: Specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish". Brain Res. Bull. 57 (4–6): 397–99. PMID 16144602. डीओआइ:10.1016/j.brainresbull.2005.03.021. नामालूम प्राचल |coauthors= की उपेक्षा की गयी (|author= सुझावित है) (मदद)
  • Burke SN, Barnes CA (2006). "Neural plasticity in the ageing brain". Nat Rev Neurosci. 7 (1): 30–40. PMID 16371948. डीओआइ:10.1038/nrn1809.
  • Buzsáki G (1986). "Hippocampal sharp waves: their origin and significance". Brain Res. 398 (2): 242–52. PMID 3026567. डीओआइ:10.1016/0006-8993(86)91483-6.
  • Buzsáki G (1989). "Two-stage model of memory trace formation: a role for "noisy" brain states". Neuroscience. 31 (3): 551–70. PMID 2687720. डीओआइ:10.1016/0306-4522(89)90423-5. मूल से 1 नवंबर 2017 को पुरालेखित. अभिगमन तिथि 17 जनवरी 2011.
  • Buzsáki G, Chen LS, Gage FH (1990). "Spatial organization of physiological activity in the hippocampal region: relevance to memory formation". Prog Brain Res. 83: 257–68. PMID 2203100. डीओआइ:10.1016/S0079-6123(08)61255-8.सीएस1 रखरखाव: एक से अधिक नाम: authors list (link)
  • Buzsáki, G (2002). "Theta oscillations in the hippocampus" (PDF). Neuron. 33 (3): 325–40. PMID 11832222. डीओआइ:10.1016/S0896-6273(02)00586-X. मूल (PDF) से 25 जून 2008 को पुरालेखित. अभिगमन तिथि 17 जनवरी 2011.
  • Buzsáki, G (2006). Rhythms of the Brain. Oxford University Press. आई॰ऍस॰बी॰ऍन॰ 0195301064.
  • Ramón y Cajal S (1894). "The Croonian Lecture: La Fine Structure des Centres Nerveux". Proc Roy Soc London. 55: 444–68. डीओआइ:10.1098/rspl.1894.0063.
  • Campbell S, Macqueen G (2004). "The role of the hippocampus in the pathophysiology of major depression". J Psychiatry Neurosci. 29 (6): 417–26. PMC 524959. PMID 15644983.
  • Cantero, JL (November 26, 2003). "Sleep-dependent theta oscillations in the human hippocampus and neocortex". J Neurosci. 23 (34): 10897–903. PMID 14645485. मूल से 1 मई 2008 को पुरालेखित. अभिगमन तिथि 17 जनवरी 2011. नामालूम प्राचल |coauthors= की उपेक्षा की गयी (|author= सुझावित है) (मदद)
  • Carey, B (2008-12-04). "H. M., an Unforgettable Amnesiac, Dies at 82". New York Times. मूल से 13 जून 2018 को पुरालेखित. अभिगमन तिथि 2009-04-27.
  • Chiu YC, Algase D, Whall A; एवं अन्य (2004). "Getting lost: directed attention and executive functions in early Alzheimer's disease patients". Dement Geriatr Cogn Disord. 17 (3): 174–80. PMID 14739541. डीओआइ:10.1159/000076353. Explicit use of et al. in: |author= (मदद)सीएस1 रखरखाव: एक से अधिक नाम: authors list (link)
  • Chang, BS (2003). "Epilepsy". N. Engl. J. Med. 349 (13): 1257–66. PMID 14507951. डीओआइ:10.1056/NEJMra022308. मूल ([मृत कड़ियाँ]) से 22 जून 2008 को पुरालेखित. अभिगमन तिथि 17 जनवरी 2011. नामालूम प्राचल |coauthors= की उपेक्षा की गयी (|author= सुझावित है) (मदद)
  • Cho RY, Gilbert A, Lewis DA (2005). "Ch 22. The neurobiology of schizophrenia". प्रकाशित Charney DS, Nestler EJ (संपा॰). Neurobiology of Mental Illness. Oxford University Press US. आई॰ऍस॰बी॰ऍन॰ 9780195189803.सीएस1 रखरखाव: एक से अधिक नाम: authors list (link)
  • Colombo, M (2000). "Is the avian hippocampus a functional homologue of the mammalian hippocampus?". Neurosci. Biobehav. Rev. 24 (4): 465–84. PMID ref10817844 |pmid= के मान की जाँच करें (मदद). डीओआइ:10.1016/S0149-7634(00)00016-6. नामालूम प्राचल |coauthors= की उपेक्षा की गयी (|author= सुझावित है) (मदद)
  • Cooke SF, Bliss TV (2006). "Plasticity in the human central nervous system". Brain. 129 (Pt 7): 1659–73. PMID 16672292. डीओआइ:10.1093/brain/awl082.
  • deOlmos J, Hardy H, Heimer L (1978). "The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study". Journal of Comparative Neurology. 181 (2): 213–244. PMID 690266. डीओआइ:10.1002/cne.901810202.सीएस1 रखरखाव: एक से अधिक नाम: authors list (link)
  • Diana RA, Yonelinas AP, Ranganath C (2007). "Imaging recollection and familiarity in the medial temporal lobe: a three-component model". Trends Cogn Sci. 11 (9): 379–86. PMID 17707683. डीओआइ:10.1016/j.tics.2007.08.001.सीएस1 रखरखाव: एक से अधिक नाम: authors list (link)
  • Duvernoy, HM (2005). "Introduction". The Human Hippocampus (3rd संस्करण). Berlin: Springer-Verlag. पृ॰ 1. आई॰ऍस॰बी॰ऍन॰ 3540231919.
  • Eichenbaum, H (1991). "Ch 7. Building a model of the hippocampus in olfaction and memory". प्रकाशित Davis JL, Eichenbaum H, (संपा॰). Olfaction. MIT Press. आई॰ऍस॰बी॰ऍन॰ 9780262041249. नामालूम प्राचल |coauthors= की उपेक्षा की गयी (|author= सुझावित है) (मदद)सीएस1 रखरखाव: फालतू चिह्न (link) सीएस1 रखरखाव: एक से अधिक नाम: editors list (link)
  • Eichenbaum, H (1993). Memory, Amnesia, and the Hippocampal System. MIT Press. नामालूम प्राचल |coauthors= की उपेक्षा की गयी (|author= सुझावित है) (मदद)
  • Eichenbaum H, Yonelinas AP, Ranganath C (2007). "The medial temporal lobe and recognition memory". Annu Rev Neurosci. 30: 123–52. PMC 2064941. PMID 17417939. डीओआइ:10.1146/annurev.neuro.30.051606.094328.सीएस1 रखरखाव: एक से अधिक नाम: authors list (link)

</ref>

आगे पढ़ें[संपादित करें]

पत्रिकाएं[संपादित करें]

पुस्तकें[संपादित करें]

बाहरी कड़ियाँ[संपादित करें]