वर्ग समीकरण

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज

गणित में दो घात वाले किसी बहुपदीय समीकरण को वर्ग समीकरण (quadratic equation) या द्विघात समीकरण कहते हैं। विज्ञान, तकनीकी एवं अन्य अनेक स्थितियों में पर किसी समस्या के समाधान के समय वर्ग समीकरण से अक्सर सामना पडता रहता है। इसलिये वर्ग समीकर और इसका हल बहुत महत्व रखता है।

वर्ग समीकरण का सामान्य रूप इस प्रकार का होता है:

यहाँ a ≠ 0. (क्योंकि a = 0, के लिये यह एक रेखीय समिकरण बन जाता है तथा इसके मूलों के लिये नीचे दिये गये व्यंजक भी अनिर्धार्य (इनडिटर्मिनेट) हो जाते हैं।)

वर्ग समीकरण को निम्नलिखित रूप में भी लिख सकते हैं-

वर्ग समीकरण का हल[संपादित करें]

किसी वर्ग समीकरण के गुणांक वास्तविक संख्या या समिश्र संख्या हो सकते हैं। किसी वर्ग समीकरण के दो मूल होते हैं (किन्तु आवश्यक नहीं कि दोनो भिन्न (distinct) हों) ; अर्थात चर राशि के दो मानों के लिये दिया गया वर्ग समीकरण संतुष्ट हो सकता है। ये दोनो मूल वास्तविक हो सकते हैं या दोनो ही समिश्र संख्या हो सकते हैं।

द्विघात समीकरण के मूल निम्नलिखित सूत्र की सहायता से प्राप्त किये जा सकते हैं:

यहाँ "±" का मतलब यह है कि

तथा

दोनो ही इसके हल हैं।

p-q सूत्र[संपादित करें]

के मूलों का सूत्र निम्नलिखित है-

.

उदाहरण[संपादित करें]

निम्नलिखित समीकरण के मूल निकालिए-

इस समीकरण को सामान्य रूप में बदलने पर,

जिसके मूल निम्नलिखित हैं-

अर्थात तथा

p-q-सूत्र का प्रयोग करने के लिये समीकरण के सामान्य रूप को निम्नलिखित रूप में बदलते हैं-

अब p-q-सूत्र से निम्नलिखित मूल मिलते हैं-

अर्थात तथा

इतिहास[संपादित करें]

वर्ग समीकरण के हल भिन्न-भिन्न तरीकों से प्राचीन काल से ही निकाले जाते रहे हैं। यूक्लिड ने वर्ग समीकरण के हल की ज्यामितीय पद्धति बतायी थी।

चित्र:Quadrat Gleichung Brahmagupta.png
वर्ग समीकरण का ब्रह्मगुप्त द्वारा वर्णित हल का चित्रांकन

आर्यभट्ट और ब्रह्मगुप्त ने इसके मूल निकालने की विधि का शब्दों में वर्णन किया है जिसे आधुनिक बीजगणितीय रूप में निम्नवत लिख सकते हैं-

इस समीकरन को निम्नलिखित रूप में व्यवस्थित किया जाय, जैसा कि बांयी तरफ के चित्र में वर्णित है-

.

इससे आधुनिक रूप स्पष्टतः में निम्नलिखित हल प्राप्त हो जाता है-

.

ब्रह्मगुप्त विधि[संपादित करें]

ब्रह्मगुप्त ने ब्रह्मस्फुटसिद्धान्त में वर्ग समीकरण के हल का निम्नलिखित सूत्र दिया है-

वर्गाहतरूपाणां अव्यक्तार्धकृतिसंयुतानां यत्।
पदमव्यक्तार्धोनं तद् वर्गं विभक्तमव्यक्तः।। (ब्रह्मस्फुटसिद्धान्त १८.४५)

अर्थ: व्यक्त राशि (c) के साथ अव्यक्त राशि के गुणांक (b) के आधे के वर्ग अर्थात् ((b/2)2) को जोड़िए। इसके वर्गमूल से अव्यक्त राशि के गुणांक के आधे (b/2) को घटाइए। पुनः अज्ञात राशि के गुणांक a से भाग दीजिए। इससे अव्यक्त राशि का मान प्राप्त होता है।

इन्हे भी देखें[संपादित करें]

बाहरी कड़ियाँ[संपादित करें]