मुक्त ज्ञानकोश विकिपीडिया से
यदि p एक अशून्य वास्तविक संख्या है, तथा
x
1
,
…
,
x
n
{\displaystyle x_{1},\dots ,x_{n}}
धनात्मक वास्तविक संख्याएँ हैं, तो इन संख्याओं का सामान्यीकृत माध्य (generalized mean) या p घात वाला घात माध्य (power mean) निम्नलिखित है-
M
p
(
x
1
,
…
,
x
n
)
=
(
1
n
∑
i
=
1
n
x
i
p
)
1
p
.
{\displaystyle M_{p}(x_{1},\dots ,x_{n})=\left({\frac {1}{n}}\sum _{i=1}^{n}x_{i}^{p}\right)^{\frac {1}{p}}.}
A visual depiction of some of the specified cases for n = 2 with a = x1 = M+∞ , b = x2 = M−∞ , ██ harmonic mean, H = M −1 (a , b ) , ██ geometric mean, G = M 0 (a , b ) ██ arithmetic mean, A = M 1 (a , b ) , and ██ quadratic mean, Q = M 2 (a , b ) .
M
−
∞
(
x
1
,
…
,
x
n
)
=
lim
p
→
−
∞
M
p
(
x
1
,
…
,
x
n
)
=
min
{
x
1
,
…
,
x
n
}
{\displaystyle M_{-\infty }(x_{1},\dots ,x_{n})=\lim _{p\to -\infty }M_{p}(x_{1},\dots ,x_{n})=\min\{x_{1},\dots ,x_{n}\}}
निम्निष्ट
M
−
1
(
x
1
,
…
,
x
n
)
=
n
1
x
1
+
⋯
+
1
x
n
{\displaystyle M_{-1}(x_{1},\dots ,x_{n})={\frac {n}{{\frac {1}{x_{1}}}+\dots +{\frac {1}{x_{n}}}}}}
हरात्मक माध्य (harmonic mean)
M
0
(
x
1
,
…
,
x
n
)
=
lim
p
→
0
M
p
(
x
1
,
…
,
x
n
)
=
x
1
⋅
⋯
⋅
x
n
n
{\displaystyle M_{0}(x_{1},\dots ,x_{n})=\lim _{p\to 0}M_{p}(x_{1},\dots ,x_{n})={\sqrt[{n}]{x_{1}\cdot \dots \cdot x_{n}}}}
गुणोत्तर माध्य (geometric mean)
M
1
(
x
1
,
…
,
x
n
)
=
x
1
+
⋯
+
x
n
n
{\displaystyle M_{1}(x_{1},\dots ,x_{n})={\frac {x_{1}+\dots +x_{n}}{n}}}
समान्तर माध्य (arithmetic mean)
M
2
(
x
1
,
…
,
x
n
)
=
x
1
2
+
⋯
+
x
n
2
n
{\displaystyle M_{2}(x_{1},\dots ,x_{n})={\sqrt {\frac {x_{1}^{2}+\dots +x_{n}^{2}}{n}}}}
वर्ग माध्य (quadratic mean]])
M
3
(
x
1
,
…
,
x
n
)
=
x
1
3
+
⋯
+
x
n
3
n
3
{\displaystyle M_{3}(x_{1},\dots ,x_{n})={\sqrt[{3}]{\frac {x_{1}^{3}+\dots +x_{n}^{3}}{n}}}}
घन माध्य (cubic mean)
M
+
∞
(
x
1
,
…
,
x
n
)
=
lim
p
→
∞
M
p
(
x
1
,
…
,
x
n
)
=
max
{
x
1
,
…
,
x
n
}
{\displaystyle M_{+\infty }(x_{1},\dots ,x_{n})=\lim _{p\to \infty }M_{p}(x_{1},\dots ,x_{n})=\max\{x_{1},\dots ,x_{n}\}}
उचिष्ट (maximum)
Proof of
lim
p
→
0
M
p
=
M
0
{\displaystyle \textstyle \lim _{p\to 0}M_{p}=M_{0}}
(geometric mean)
We can rewrite the definition of Mp using the exponential function
M
p
(
x
1
,
…
,
x
n
)
=
exp
(
ln
[
(
∑
i
=
1
n
w
i
x
i
p
)
1
/
p
]
)
=
exp
(
ln
(
∑
i
=
1
n
w
i
x
i
p
)
p
)
{\displaystyle M_{p}(x_{1},\dots ,x_{n})=\exp {\left(\ln {\left[\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)^{1/p}\right]}\right)}=\exp {\left({\frac {\ln {\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)}}{p}}\right)}}
In the limit p → 0, we can apply L'Hôpital's rule to the argument of the exponential function. Differentiating the numerator and denominator with respect to p, we have
lim
p
→
0
ln
(
∑
i
=
1
n
w
i
x
i
p
)
p
=
lim
p
→
0
∑
i
=
1
n
w
i
x
i
p
ln
x
i
∑
i
=
1
n
w
i
x
i
p
1
=
lim
p
→
0
∑
i
=
1
n
w
i
x
i
p
ln
x
i
∑
i
=
1
n
w
i
x
i
p
=
∑
i
=
1
n
w
i
ln
x
i
=
ln
(
∏
i
=
1
n
x
i
w
i
)
{\displaystyle \lim _{p\to 0}{\frac {\ln {\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)}}{p}}=\lim _{p\to 0}{\frac {\frac {\sum _{i=1}^{n}w_{i}x_{i}^{p}\ln {x_{i}}}{\sum _{i=1}^{n}w_{i}x_{i}^{p}}}{1}}=\lim _{p\to 0}{\frac {\sum _{i=1}^{n}w_{i}x_{i}^{p}\ln {x_{i}}}{\sum _{i=1}^{n}w_{i}x_{i}^{p}}}=\sum _{i=1}^{n}w_{i}\ln {x_{i}}=\ln {\left(\prod _{i=1}^{n}x_{i}^{w_{i}}\right)}}
By the continuity of the exponential function, we can substitute back into the above relation to obtain
lim
p
→
0
M
p
(
x
1
,
…
,
x
n
)
=
exp
(
ln
(
∏
i
=
1
n
x
i
w
i
)
)
=
∏
i
=
1
n
x
i
w
i
=
M
0
(
x
1
,
…
,
x
n
)
{\displaystyle \lim _{p\to 0}M_{p}(x_{1},\dots ,x_{n})=\exp {\left(\ln {\left(\prod _{i=1}^{n}x_{i}^{w_{i}}\right)}\right)}=\prod _{i=1}^{n}x_{i}^{w_{i}}=M_{0}(x_{1},\dots ,x_{n})}
as desired.
Proof of
lim
p
→
∞
M
p
=
M
∞
{\displaystyle \textstyle \lim _{p\to \infty }M_{p}=M_{\infty }}
and
lim
p
→
−
∞
M
p
=
M
−
∞
{\displaystyle \textstyle \lim _{p\to -\infty }M_{p}=M_{-\infty }}
Assume (possibly after relabeling and combining terms together) that
x
1
≥
⋯
≥
x
n
{\displaystyle x_{1}\geq \dots \geq x_{n}}
. Then
lim
p
→
∞
M
p
(
x
1
,
…
,
x
n
)
=
lim
p
→
∞
(
∑
i
=
1
n
w
i
x
i
p
)
1
/
p
=
x
1
lim
p
→
∞
(
∑
i
=
1
n
w
i
(
x
i
x
1
)
p
)
1
/
p
=
x
1
=
M
∞
(
x
1
,
…
,
x
n
)
.
{\displaystyle \lim _{p\to \infty }M_{p}(x_{1},\dots ,x_{n})=\lim _{p\to \infty }\left(\sum _{i=1}^{n}w_{i}x_{i}^{p}\right)^{1/p}=x_{1}\lim _{p\to \infty }\left(\sum _{i=1}^{n}w_{i}\left({\frac {x_{i}}{x_{1}}}\right)^{p}\right)^{1/p}=x_{1}=M_{\infty }(x_{1},\dots ,x_{n}).}
The formula for
M
−
∞
{\displaystyle M_{-\infty }}
follows from
M
−
∞
(
x
1
,
…
,
x
n
)
=
1
M
∞
(
1
/
x
1
,
…
,
1
/
x
n
)
.
{\displaystyle M_{-\infty }(x_{1},\dots ,x_{n})={\frac {1}{M_{\infty }(1/x_{1},\dots ,1/x_{n})}}.}