गुणोत्तर श्रेढ़ी

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज

गणित में संख्याओं के ऐसे श्रेढ़ी को गुणोत्तर श्रेढ़ी (geometric progression या geometric sequence या GP) कहते हैं जिसके किन्हीं दो क्रमागत पदों का अनुपात अचर (constant) हो। गुणोत्तर श्रेढ़ी का प्रत्येक पद पिछले पद में एक नियत अशून्य संख्या का गुणा करने से प्राप्त होता है। इस नियत संख्या को 'सार्व अनुपात' (common factor) कहते हैं।

उदाहरण के लिये 2, 6, 18, 54, ... एक गुणोत्तर श्रेढ़ी है जिसका सार्व अनुपात है। इसी प्रकार 10, 5, 2.5, 1.25, ... भी एक गुणोत्तर श्रेढ़ी है जिसका सार्व अनुपात ०.५ है। किसी गुणोत्तर श्रेढ़ी का सर्वनिष्त अनुप ऋणात्मक भी हो सकता है ऐसी श्रेढ़ी के पद धनात्मक, ऋणात्मक, धनात्मक .... होते हैं। उदाहरण के लिये

1, −3, 9, −27, 81, −243, ...

एक गुणोत्तर श्रेढ़ी है जिसका सार्व अनुपात −3 है।

किसी गुणोत्तर श्रेढ़ी का सामान्य रूप निम्नलिखित है-

a,\ ar,\ ar^2,\ ar^3,\ ar^4,\ \ldots जिसका सार्व अनुपात r है।

किसी G.P. के तीन क्रमागत पदों  a , b and c में निम्नलिखित संबन्ध होता है: b^2=ac

गुणोत्तर श्रेढ़ी (geometric progression) तथा गुणोत्तर श्रेणी (geometric series)

निमनलिखित गुणोत्तर श्रेढ़ी है, इसके पदों के बीच + या - नहीं होता बल्कि उन्हें , से अलग करते हैं-

a,\ ar,\ ar^2,\ ar^3,\ ar^4,\ \ldots

निमनलिखित गुणोत्तर श्रेणी है, इसके पदों के बीच + या - होता है और यह एक 'मान' (value) का द्योतक है-

a + ar + ar^2 + ar^3 + ar^4 + \cdots

प्रमुख गुण[संपादित करें]

  • किसी गुणोत्तर श्रेढ़ी का प्रथम पद a तथा सार्व अनुपात r हो तो उसका n-वाँ पद निम्नलिखित सूत्र से निकलेगा-
a_n = a\,r^{n-1}.
  • गुणोत्तर श्रेणी का योग
\sum_{k=0}^{n} ar^k = ar^0+ar^1+ar^2+ar^3+\cdots+ar^n. \,
\sum_{k=0}^n k^s r^k.

अनन्त गुणोत्तर श्रेणी[संपादित करें]

अनन्त पदों वाली गुणोत्तर श्रेणी का योग उसी दशा में कन्वर्ज करेगा जब उस श्रेणी का सार्व अनुपात का निरपेक्ष मान 1 से कम हो। उदाहरण -

1/2 + 1/4 + 1/8 + 1/16 + · · · एक अनन्त श्रेणी है जो कन्वर्ज करेगी।

अनन्त गुणोत्तर श्रेणी का मान निम्नलिखित सूत्र से ज्ञात किया जा सकता है-

\sum_{k=0}^\infty ar^k = \lim_{n\to\infty}{\sum_{k=0}^{n} ar^k} = \lim_{n\to\infty}\frac{a(1-r^{n+1})}{1-r}= \lim_{n\to\infty}\frac{a}{1-r} - \lim_{n\to\infty}{\frac{ar^{n+1}}{1-r}}

चूंकि:

 r^{n+1} \to 0 \mbox{ as } n \to \infty \mbox{ when } |r| < 1.

अतः:

\sum_{k=0}^\infty ar^k = \frac{a}{1-r} - 0 = \frac{a}{1-r}


उदाहरण
\frac12+\frac14+\frac18+\frac{1}{16}+\cdots=\frac{1/2}{1-(+1/2)} = 1.
\frac12-\frac14+\frac18-\frac{1}{16}+\cdots=\frac{1/2}{1-(-1/2)} = \frac13.

इन्हें भी देखें[संपादित करें]

बाहरी कड़ियाँ[संपादित करें]