"समूह (गणितशास्त्र)": अवतरणों में अंतर

मुक्त ज्ञानकोश विकिपीडिया से
No edit summary
No edit summary
पंक्ति 2: पंक्ति 2:


[[गणित|गणितशास्त्र]] में '''समूह''' एक [[बीजगणित|बीजगणितीय]] संरचना है, जिसमें एक अंतर्निहित [[समुच्चय सिद्धान्त|समुच्चय]] व उसपर कार्य करने वाली एक द्विआधारी संक्रिया होते हैं, जो कि समुच्चय के किन्हीं दो अवयवों को जोडने पर एक तीसरा अवयव देती है। एक समूह कहलाने के लिए किसी समुच्चय और संक्रिया पर चार प्रतिबंध होते हैं जिन्हें समूह [[अभिगृहीत]] कहते हैं। यह इस प्रकार हैं - संवृति, सहचारिता, तत्समक एवं व्युत्क्रमणीयता। कई सुपरिचित गणितीय [[संरचना|संरचनाएँ]] इन अभिगृहीतों का पालन करती हैं, उदाहरणार्थ [[पूर्णांक]] योगफल करने की संक्रिया के तहत एक समूह बनाते हैं।
[[गणित|गणितशास्त्र]] में '''समूह''' एक [[बीजगणित|बीजगणितीय]] संरचना है, जिसमें एक अंतर्निहित [[समुच्चय सिद्धान्त|समुच्चय]] व उसपर कार्य करने वाली एक द्विआधारी संक्रिया होते हैं, जो कि समुच्चय के किन्हीं दो अवयवों को जोडने पर एक तीसरा अवयव देती है। एक समूह कहलाने के लिए किसी समुच्चय और संक्रिया पर चार प्रतिबंध होते हैं जिन्हें समूह [[अभिगृहीत]] कहते हैं। यह इस प्रकार हैं - संवृति, सहचारिता, तत्समक एवं व्युत्क्रमणीयता। कई सुपरिचित गणितीय [[संरचना|संरचनाएँ]] इन अभिगृहीतों का पालन करती हैं, उदाहरणार्थ [[पूर्णांक]] योगफल करने की संक्रिया के तहत एक समूह बनाते हैं।
{{समूह सिद्धांत}}
{{बीजगणितिय संरचना}}
{{बीजगणितिय संरचना}}



12:24, 25 मार्च 2013 का अवतरण

रुबिक घन समूह से रुबिक घन प्रहस्तन।

गणितशास्त्र में समूह एक बीजगणितीय संरचना है, जिसमें एक अंतर्निहित समुच्चय व उसपर कार्य करने वाली एक द्विआधारी संक्रिया होते हैं, जो कि समुच्चय के किन्हीं दो अवयवों को जोडने पर एक तीसरा अवयव देती है। एक समूह कहलाने के लिए किसी समुच्चय और संक्रिया पर चार प्रतिबंध होते हैं जिन्हें समूह अभिगृहीत कहते हैं। यह इस प्रकार हैं - संवृति, सहचारिता, तत्समक एवं व्युत्क्रमणीयता। कई सुपरिचित गणितीय संरचनाएँ इन अभिगृहीतों का पालन करती हैं, उदाहरणार्थ पूर्णांक योगफल करने की संक्रिया के तहत एक समूह बनाते हैं।

परिभाषा और चित्रण

प्रथम उदाहरण : पूर्णांक

एक चिर-परिचित समूह, पूर्णांको Z का समुच्चय जिसमें संख्याएं

..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...,[1]जहाँ द्विचर संक्रिया जोड़ (+) है।

इतिहास

स्वतः प्रमाणित कुछ मूलभूत परिणाम

मूल अवधारणा

उदाहरण और अनुप्रयोग

परिमित समूह

सरल परिमित समूहों का वर्गीकरण

समूह और अतिरिक्त संरचनाएं

सांस्थितिकीय समूह

ली समूह

व्यापकीकरण

ये भी देखें

सन्दर्भ

  1. लैंग, हार्वार्ड (2005). "स्नातक बीजगणित" (अंग्रेजी में). en:Springer-Verlag. आई॰ऍस॰बी॰ऍन॰ 978-0-387-22025-3.सीएस1 रखरखाव: नामालूम भाषा (link)