इस्पात

इस्पात (Steel), लोहा, कार्बन तथा कुछ अन्य तत्वों का मिश्रातु है। इसकी तन्य शक्ति (tensile strength) अधिक होती है जबकि प्रति टन मूल्य कम होने के कारण यह भवनों, अधोसंरचना, औजार, जलयान, वाहन, और मशीनों के निर्माण में प्रयुक्त होता है।
'इस्पात' शब्द इतने विविध प्रकार के परस्पर अत्यधिक भिन्न गुणोंवाले पदार्थो के लिए प्रयुक्त होता है कि इस शब्द की ठीक-ठीक परिभाषा करना वस्तुत: असंभव है। परंतु व्यवहारत: इस्पात से लोहे तथा कार्बन (कार्बन) की मिश्र धातु ही समझी जाती है (दूसरे तत्त्व भी साथ में चाहे हों अथवा न हों)[1] किसी अन्य तत्त्व की अपेक्षा कार्बन, लोहे के गुणों को अधिक प्रभावित करता है; इससे अद्वितीय विस्तार में विभिन्न गुण प्राप्त होते हैं। वेसे तो कई अन्य साधारण तत्त्व भी मिलाए जाने पर लोहे तथा इस्पात के गुणों को बहुत बदल देते हैं, परंतु इनमें कार्बन ही प्रधान मिश्रधातुकारी तत्त्व है। यह लोहे की कठोरता तथा पुष्टता समानुपातिक मात्रा में बढ़ाता है, विशेषकर उचित उष्मा उपचार के उपरांत।
लोहा के साथ कार्बन सबसे किफायत मिश्रक होता है, लेकिन जरूरत के अनुसार, इसमें मैंगनीज, क्रोमियम, वैंनेडियम और टंग्सटन भी मिलाए जाते हैं। कार्बन और दूसरे पदार्थ मिश्र-धातु को कठोरता प्रदान करते हैं। लौहे के साथ, उचित मात्रा में मिश्रक मिलाकर लोहे को आवश्यक कठोरता, तन्यता और सुघट्यता प्रदान किया जाता है। लौहे में जितना ज्यादा कार्बन मिलाते हैं इस्पात उतना ही कठोर बनता जाता है, कठोरता बढ़ने के साथ ही उसकी भंगुरता भी बढ़ती जाती है। 1149 डिग्री सेल्सियस पर लौहे में कार्बन की अधिकतम घुल्यता 2.14 प्रतिशत है। कम तापमान पर अगर लौहे में ज्यादा मात्रा में कार्बन हो तो इससे सिमेंटाइट का निर्माण होगा। लौहे में अगर इससे ज्यादा कार्बन हो तो यह कास्ट आयरन कहलाता है, क्योंकि इसका गलनाक कम हो जाता है। इस्पात, कास्ट आयरन से इसलिए भी अलग होता है क्योंकि इसमें दूसरे तत्वों की मात्रा अत्यन्त कम होती है यानी 1 से तीन प्रतिशत के करीब. इस्पात जंग-रोधी होता है और इसे आसानी से वेल्ड किया जा सकता है।
आजकल, गृह-निर्माण, बांध, पुल, सड़क आदि में इस्पात का बड़े पैमाने पर इस्तेमाल होता है और बाजार अलग अलग गुणवत्ता वाले इस्पात अलग-अलग दामों पर उपलब्ध हैं।


इस्पात का महत्त्व
[संपादित करें]हमारे जीवन में इस्पात का काफी प्रभाव है - कार जिसे हम चलाते हैं, भवन जिसमें हम कार्य करते हैं, जिस घर में हम रहते हैं और असंख्य अन्य पहलू इसमें आते हैं। विद्युत पावर लाइन टावर, प्राकृतिक गैस पाइप लाइनें, मशीन उपकरण आदि में इस्पात का प्रयोग होता है जिसकी सूची काफी लम्बी है। घरों में हमारे परिवारों को सुरक्षित रखने, हमारे जीवन को सुविधाजनक बनाने में इस्पात का महत्वपूर्ण स्थान है। इसका फायदा निसंदेह स्पष्ट है। इस्पात अत्यधिक महत्वपूर्ण, बहुकार्यात्मक और सर्वाधिक अनुकूलनीय है। यदि इस्पात नहीं होता तो मानव जाति का विकास संभव नहीं होता। इस्पात के बल पर और सहज प्रयोग से विकसित अर्थव्यवस्था का आधार रखा गया था। इस्पात का विविध प्रयोग क्रमशः इस्पात का अनुकूलनीय मापदण्ड है जिन्हे इस्पात के निम्नलिखित विशेषताओं से आंका जा सकता है -[2]
- गर्म और ठण्डी अवस्था में रूपान्तरण (hot and cold formable), वेल्ड करने योग्य, यांत्रिक रूप से उपयुक्त - सख्त, टफ, कम घिसने वाला, जंग प्रतिरोधी, ताप प्रतिरोधी - उच्च तापमान पर भी कम विकृति आदि।
इस्पात का अन्य पदार्थों से तुलना की जाय तो इसकी उत्पादन-लागत कम है। एलुमिनियम को बनाने में जितना उर्जा लगती है उसका लगभग 25% उर्जा से लोह अयस्क से लोहा बनता है। इस्पात पर्यावरण-मित्र है, इसको पुन:चक्रित (recycle) किया जा सकता है। भूगर्भ में 5.6% लौह तत्त्व विद्यमान है अत: इसका कच्चा माल का आधार भी मजबूत है। इस्पात का उत्पादन अन्य सभी अलौह पदार्थों के कुल उत्पादन से भी 20 गुना अधिक है।
सब मिलाकर इस्पात के लगभग 2000 किस्मों का विकास हुआ है जिसमें 1500 प्रकार के इस्पात उच्च ग्रेड के हैं। तथापि विभिन्न प्रकार के गुणधर्म वाले इस्पात के नये ग्रेडों के विकास की असीम संभावएँ हैं। हमारे जीवन में इस्पात के उपयोग का महत्वपूर्ण स्थान है और आने वाले वर्षों में इसका उपयोग होता रहेगा।
इस्पात निर्माण
[संपादित करें]इस्पात की विशेषताएँ
[संपादित करें]साधारण इस्पात में, चाहे वह जिस विधि द्वारा बनाया गया हो, कार्बन तथा मैंगनीज़ 0.10 से 1.50 प्रतिशत, सिलिकन 0.20 से 0.25 प्रतिशत, गंधक तथा फासफोरस 0.01 से 0.10 प्रतिशत तथा ताँबा, ऐल्युमिनियम और आरसेनिक न्यून मात्रा में उपस्थित रहते हैं। प्राय: हाइड्रोजन, आक्सीजन तथा नाइट्रोजन भी अल्प मात्रा में रहते हैं l इस जाति के इस्पात कई प्रकार के काम में आते हैं। यद्यपि सभी इस्पात मिश्रधातु ही हैं, तथापि साधारण बोलचाल में इस्पात को एक सरल (अमिश्र) धातु ही माना जाता है। ऊपर दिए हुए विश्लेषण से यदि किसी तत्त्व की मात्रा अधिक हो, अथवा इस्पात में दूसरे तत्त्व, जैसे निकल, क्रोमियम, वैनेडियम, टंग्स्टन, मालिब्डीनम, टाइटेनियम आदि भी हों, जो सामान्यत: इस्पात में नहीं होते, तो विशेष या मिश्र धात्वीय इस्पात बनता है। यांत्रिक गुणों की वृद्धि के लिए ही सामान्यत: यह मिलावट की जाती है। इस्पात की कुछ विशेषताएँ, जो मिश्रधातुकारी तत्वों द्वारा प्रभावित होती हैं, इस प्रकार हैं:
- (क) यांत्रिक गुणों में वृद्धि
- (1) तैयार इस्पात की पुष्टता में वृद्धि
- (2) किसी निम्नतम कठोरता या पुष्टता पर चिमड़ेपन (टफ़नेस) अथवा सुघट्यता (प्लैस्टिसिटी) में वृद्धि।
- (3) उस अधिकतम मोटाई में वृद्धि जिसे बुझाकर वांछित सीमा तक कड़ा किया जा सकता हो।
- (4) बुझाकर कठोरीकरण की क्षमता में कमी।
- (5) ठंढी रीति से कठोरीकरण की दर में वृद्धि।
- (6) खरादने इत्यादि की क्रिया सुगमता से कर सकने के विचार से कड़ाई को सुरक्षित रखकर सुघट्यता में कमी।
- (7) घिसाव-प्रतिरोध अथवा काटने के सामथ्र्य में वृद्धि।
- (8) इच्छित कठोरता प्राप्त करते समय ऐंठने या चटकने में कमी।
- (9) ऊँचे या निम्न ताप पर भौतिक गुणों में उन्नति।
- (ख) चुम्बकीय गुणों में वृद्धि
- (1) प्रारंभिक चुंबकशीलता (पर्मिएबिलिटी) तथा अधिकतम प्रेरण (इंडक्शन) में वृद्धि।
- (2) प्रसाही (कोअर्सिव) बल, मंदायन (हिस्टेरोसिस) तथा विद्युत् (वाट) हानि में कमी (चुंबकीय अर्थ में कोमल लोहा)।
- (3) प्रसाही बल तथा चुंबकीय स्थायित्व (रिमेनेंस) में वृद्धि।
- (4) सभी प्रकार के चुबंकीय गुणों में कमी।
- (ग) रासायनिक निष्क्रियता में वृद्धि
- (1) आर्द्र वातावरण में मोरचा लगने में कमी।
- (2) उच्च ताप पर भी रासायनिक क्रियाशीलता में कमी।
- (3) रासायनिक वस्तुओं द्वारा आक्रमण में कमी।
- ऊष्मा उपचार (हीट-ट्रीटमेन्ट) से इस्पात के गुणों में परिवर्तन
लोहा दो प्रकार के अति उपयोगी सममापीय (आइसोमेट्रिक) रवों के रूप में रहता है : (1) ऐल्फ़ा लोहा, जिसके ठोस घोल को "फ़ेराइट" कहते हैं और (2) गामा लोहा, जिसका ठोस घोल "ऑसटेनाइट" है। शुद्ध लोहे का ऐल्फ़ा रूप लगभग 910 डिग्री सें. से कम ताप पर रहता है; अधिक ताप पर गामा रूप रहता है। इन दोनों रूपों के लोहों में विविध मिश्रधातुकारी तत्वों को घुलनशीलता अति भिन्न है। व्यापारिक कार्बन-इस्पात, धातु-कार्मिक विचार से, लौह कार्बाइड का फेराइट में एक विक्षेपण (डिस्पर्शन) है, जिसमें लौह कार्बाइड का अनुपात कारबन की मात्रा पर निर्भर रहता है।
कार्बन इस्पात के मोटे टुकड़ों को ऐसी विधियों तथा दरों से एक सीमा तक ठंढा किया जा सकता है कि फेराइट में सीमेंटाइट के संभव वितरणों में से कोई भी वितरण उपलब्ध हो जाए। संरचना तथा ऊष्मा उपचार के विचार से कारबन इस्पात के अपेक्षाकृत ऐसे छोटे नमूने सरलता से चुने जा सकते हैं जिनमें साधारण ताप पर प्राय: महत्तम यांत्रिक गुण हों।
अकठोरीकृत इस्पात के दो अवयवों में दूसरा कारबाइड कला (फ़ेज़) है। कारबाइड की मात्रा, जो कारबन के अनुपात पर निर्भर रहती है, इस्पात के गुणों को बदलती है। विक्षेपण (डिस्पर्शन) में कारबाइड के कणों के रूप तथा उसकी सूक्ष्मता से यह और भी अधिक बदलती है। इस्पात को कठोर करने में तथा पानी चढ़ाते समय, मिश्रधातुकारी तत्त्व की उपस्थिति अंत में प्राप्त पदार्थ को एकदम बदल सकती है। फलत: संरचना और इसलिए इस्पात के गुण, जो इसी पर अत्यधिक आधारित हैं, ऑस्टेनाइट की संरचना तथा दाने के परिमाण पर निर्भर हैं।
बुझाए हुए इस्पात कार्बन के मात्रानुसार विभिन्न कठोरतावाले होते हैं। कठोरता के लिए केवल कारबन पर ही निर्भर होने में इस्पात को एकाएक बुझाना पड़ता है। इससे या तो दूसरी बुराइयाँ उत्पन्न हो सकती है अथवा बहुत भीतर तक कठोरीकरण नहीं हो पाता है। कुछ उच्च मिश्रधात्वीय इस्पातों में साधारण ताप पर ही अपेक्षाकृत धीरे धीरे ठंडा कर, यह कठोरीकरण कुछ अंशों में प्राप्त किया जा सकता है।
बुझाए हुए तथा कठोरीकृत इस्पातों में आंतरिक तनाव होता है, जो फिर से गरम करके दूर किया जाता है। इस क्रिया को पानी चढ़ाना (टेंपरिंग) कहते हैं।
मिश्रधातुकारी तत्वों का प्रभाव
[संपादित करें]ऑस्टेनाइट रूपांतरण में कारबन के अतिरिक्त अन्य मिश्रधातुकारी तत्त्व सामान्यत: सुस्ती पैदा करते हैं। कोबल्ट छोड़ अन्य तत्वों की उपस्थिति में बुझाने पर अधिक गहराई तक कठोरीकरण होता है। साधारणतया सभी मिश्रधात्वीय इस्पातों तथा बहुत से कारबन-इस्पातों में इच्छित गुणों का अच्छा संयोग उचित उष्माउपचार से प्राप्त होता है।
कार्बन - सादे कारबन-इस्पात में, कारबन की मात्रा को 0.1 प्रतिशत से 1.0 6789 प्रतिशत तक या अधिक बढ़ाने पर तनाव पुष्टता बढ़ती है। बुझाए हुए कारबन इस्पात में तनाव पुष्टता अत्यधिक बढ़ जाती है, जैसे 1 प्रतिशत कारबन पर 150 टन वर्ग इंच तक। बुझाए हुए तथा पानी चढ़ाए (टेंपर किए) इस्पात की शक्ति पानी चढ़ाने के तापक्रम पर निर्भर रहती है।
ऐल्युमिनियम - धातु के दानों के परिमाण (ग्रेन साइज़) को नियंत्रित करने के लिए थोड़ी मात्रा में ऐल्युमिनियम, 3 पाउंड प्रति टन तक, पिघले हुए इस्पात में मिलाया जाता है। सतह की अत्यधिक कठोरतावाले भागों में 1.3 प्रतिशत तक ऐल्युमिनियम रहता है।
बोरन - बोरन इस्पात आधुनिक विकास है। कुछ निम्न मिश्रधात्वीय इस्पातों में 0.003 प्रतिशत जैसी कम मात्रा में बोरन मिलाए जाने पर कठोर हो जाने की क्षमता बढ़ती है तथा यांत्रिक गुणों की उन्नति होती है।
क्रोमियम - अकेले अथवा दूसरे मिश्रधातुकारी तत्वों से संयोजित क्रोमियम, इस्पात का घर्षण-अवरोध तथा कठोर हो सकने की क्षमता बढ़ाता है। अधिक मात्रा में, 12 से 14 प्रतिशत तक, होने पर यह अकलुष (स्टेनलेस) इस्पात का आवश्यक तत्त्व है। इसी अथवा इससे भी अधिक मात्रा में (20 प्रतिशत तक) क्रोमियम रहने पर, निकल और कभी-कभी दूसरे तत्वों के साथ मिलाकर, तरह तरह के ऊष्मा प्रतिरोधक इस्पात तथा विभिन्न प्रकार के ऑस्टेनाइट इस्पात बनते हैं जो मार्चें तथा अम्ल की क्रिया के प्रति अत्यधिक अवरोधकता के लिए प्रसिद्ध हैं। क्रोमियम घर्षण-अवरोध की उन्नति करता है; इसलिए 2 प्रतिशत कारबन के साथ 12 प्रतिशत तक क्रोमियम कुछ विशेष तरह के यंत्रों तथा ठप्पों के लिए इस्पात बनाने में उपयुक्त होता है। पृष्ठ कठोरीकरण (केस हार्डेनिंग) तथा नाइट्राइडिंग के लिए इस्पात में क्रोमियम प्राय: 2 प्रतिशत से कम ही होता है। सीधे कठोरीकृत छर्रो (बाल बेयरिंग) तथा कुचलने की मशीनवाले गोलों के इस्पात में क्रोमियम की मात्रा अधिक होती है।
कोबाल्ट - कोबल्ट से, कुछ उच्च वेगवाले यांत्रिक इस्पातों की काटने की क्षमता बढ़ती है। कुछ ऊष्मा प्रतिरोधक इस्पातों में, जैसे गैस टर्बिन इंजन के ढले हुए ब्लेडों में, यह प्रयुक्त होता है। अधिक मात्रा में यह ऐसे इस्पात का आवश्यक अंग होता है जो उन अति कठिन परिस्थितियों को सहन करने के लिए बनते हैं जिनमें गैस टर्बिन के ब्लेड कार्य करते हैं। इन उपयागों में कोबल्ट मिलाने से इस्पात को ऊष्मा अवरोधक गुण, सतह पर चिप्पड़ (स्केल) न बनने देने तथा धीरे-धीरे माप में स्वत: परिवर्तन (क्रीप) को रोकने की क्षमता मिलती है। स्थायी चुंबक की मिश्रधातुओं में भी कोबल्ट पर्याप्त मात्रा में रहता है।
ताँबा - बिना ताँबा के इस्पात की तुलना में ताँबा की थोड़ी भी मात्रावाले इस्पात में संक्षारण-अवरोध अधिक होता है। गृहनिर्माण के लिए प्रयुक्त अथवा ऐसे ही दूसरे प्रकार के नरम इस्पातों में लगभग 0.6 प्रतिशत तक ताँबा रहता है।
मैंगनीज - इस्पात का ठोसपन बढ़ाने के लिए तथा बची हुई गंधक से मिलकर, सल्फाइड के कारण, भुरभुरापन रोकने के लिए 0.5 से 1.0 प्रतिशत तक मैंगनीज मिलाया जाता है।
1.0 प्रतिशत से 1.8 प्रतिशत तक, मैंगनीज़ इस्पात की तनावपुष्टता तथा कठोरता में वृद्धि करता है। 13 प्रतिशत मैंगनीज-इस्पात का एक अलग ही वर्ग है। ऐसा इस्पात ठोंकने पीटने से कड़ा हो जाता है, अर्थात् सुघट्य तनाव (प्लैस्टिक स्ट्रेन) पड़ने पर स्वयं कड़ा हो जाता है। किसी साधारण ऊष्मा उपचार द्वारा इसका कठोरीकरण नहीं होता। यह अधिकतर ढलाई के लिए प्रयुक्त होता है। झाम (ड्रेजर) के ओष्ठ, चट्टान तोड़नेवाली मशीनों के जबड़े, रेल की पटरियों की संघि (क्रासओवर) तथा अन्य विशेष मार्ग संबंधी कार्यो में, जहाँ घिसाई की विशेष आशंका रहती है, इसका उपयोग होता है।
मालिब्डीनम - इस्पात में मालिब्डीनम शक्ति, कठोर हो सकने की क्षमता तथा धीरे-धीरे स्वत: परिवर्तन के प्रति अवरोध बढ़ाता है। उच्च तापक्रम पर कार्य करने के लिए इस्पात की कठोरता सुरक्षित रखने में भी मालिब्डीनम सहायक है। इसलिए कुछ उच्च वेग इस्पातों में टंग्स्टन के एक अंश के बदले इसी का उपयोग होता है। उदाहरण के लिए 5.5 प्रतिशत मालिब्डीनम और 6 प्रतिशत टंग्स्टन का एक उच्चवेग इस्पात है, जो प्रामाणिक 18 प्रतिशत टंग्स्टन की तुलना में उपयोगी और सस्ता होता है।
निकल - इस्पात में मिलाने के लिए (मैंगनीज़ को छोड़) सबसे अधिक उपयोग इसी का होता है। पिघले हुए लोहे में यह सभी अनुपातों में घुल जाता है तथा ठंडा होने पर ठोस घोल बनाता है। 5 प्रतिशत तक रहने पर यह इस्पात का चिमड़ापन तथा तनाव पुष्टता बढ़ाता है। यह कठोर हो सकने की क्षमता को भी बढ़ाता है, जिससे पानी में बुझाने की जगह तेल में बुझाकर कठोरीकरण संभव है। फटने तथा ऐंठने की प्रवृत्ति को भी कम करता है, जिससे बड़ी नाप के ऐसे इस्पात को भी अच्छी तरह कठोर किया जा सकता है।
कुछ पृष्ठ-कठोरीकरण इस्पातों में 1.0 से 5.0 प्रतिशत तक निकल रहता है। नाइट्राइडिंग इस्पातों में साधारणत: निकल की मात्रा अधिक से अधिक 0.4 प्रतिशत तक ही सीमित है। (नाइट्राइडिंग इस्पात के बाहरी पृष्ठ को कड़ा करने की एक रीति है। साधारणत: अमोनिया गैस में इस्पात को 500-555डिग्री सेंटीग्रेड तक तप्त करने से यह कार्य सिद्ध होता है।)
बहुत से संक्षारण-अवरोधक तथा "स्टेनलेस" ऑस्टेनाइटमय इस्पातों में निकल का अंश 8 प्रतिशत तथा इससे अधिक होता है। प्रसिद्ध 18 : 8 क्रोमियम-निकल-इस्पात तथा उससे मिलते जुलते इस्पात भी इसी वर्ग में सम्मिलित हैं। कुछ अति नवीन प्रकार के इस्पातों में निकल की मात्रा अधिक होती हैं, जैसे 20 प्रतिशत या इससे भी अधिक। ये उच्च ताप तथा अत्यधिक दबाव की स्थितियों में कार्य करने के लिए उपयुक्त होते हैं; उदाहरणत:, गैस टर्बिन के स्थिर तवे (डिस्क) तथा ब्लेड। 36 प्रतिशत निकल का, इस्पात, जो "इनवार" नाम से प्रसिद्ध है, अपने अति निम्न-प्रसार-गुणांक के कारण यथार्थदर्शी घड़ियों, स्वरित्र (टयूनिंग फ़ोर्क) तथा बहुत से वैज्ञानिक उपकरण बनाने में उपयुक्त होता है।
कोलंबियम - क्रोमियम इस्पात या 18 : 8 क्रोमियम-निकल प्रकार के इस्पात को स्थिर करने के लिए 1 प्रतिशत अथवा ऐसी ही मात्रा तक कोलंबियम का उपयोग होता है। यह टाइटेनियम के सदृश ही कार्य करता है।
सिलिकन - मैंगनीज़ की भाँति सिलिकन सभी इस्पातों में प्रारंभ से ही, अथवा इस्पात बनाते समय मिलावट के कारण, रहता है। इसकी उपस्थिति से इस्पात का अनाक्सीकरण होना प्राय: निश्चित सा हो जाता है। सिलिकन में, अधिक मात्रा में रहने पर, इस्पात की शक्ति तथा कठोर हो सकने की क्षमता बढ़ाने की तथा आंतरिक तन्यता कम करने की प्रवृत्ति होती है। सिलिकन मैंगनीज़ के कमानी वाले इस्पात में इसकी मात्रा 1.5 प्रतिशत से 2 प्रतिशत तक रहती है, जिसमें मैंगनीज़ की मात्रा लगभग 0.6-1.0 प्रतिशत होती है। सिलिकन -क्रोमियम से बने इंजनों के वाल्वों के इस्पात में सिलिकन की मात्रा 3.75 प्रतिशत होती है। निकल-क्रोमियम-टंग्स्टन वाल्वों के इस्पात में इसकी मात्रा 1.0-2.5 प्रतिशत होती है।
गंधक - जैसा विदित है, इस्पात में गंधक का होना साधारणतया उपद्रवप्रद है। मिश्रधातुकारी तत्त्व के रूप में इसका उपयोग केवल स्वच्छंदता से कटनेवाले इस्पात में होता है।
सिलिनियम- यह तत्त्व गंधक के सदृश ही कार्य करता है।
टाइटेनियम - थोड़ी मात्रा में मिलाने से यह इस्पात की स्थिरता बढ़ाता है और कहते हैं, इसके कारण दाने (ग्रेन) का परिमाण अधिक सूक्ष्म होता है।
टंग्स्टन - 20 प्रतिशत तक की मात्रा में टंग्स्टन उच्चवेग इस्पात का आवश्यक अवयव है; इसलिए कि यह इस्पात को ऊष्मा उपचार के बाद अत्यधिक कठोरता प्रदान करता है, जो ऊँचे ताप पर भी स्थिर रह जाती है। गर्म-ठप्पा-इस्पात तथा दूसरे गर्म कार्य के लिए उपयुक्त इस्पात में भी इसका उपयोग होता है। इसमें इसकी मात्रा 2 प्रतिशत से लगभग 10 प्रतिशत तक होती है।
वैनेडियम - इस्पात में वैनेडियम, फ़ेरो-वैनेडियम के रूप में मिलाया जाता है। यह शक्तिशाली स्चच्छकारक वस्तु है। इससे इस्पात की स्थिरता तथा सफाई बढ़ती है तथा ऊष्मा उपचारित कारबनमय और मिश्रधात्वीय इस्पात के यांत्रिक गुण उन्नत होते हैं। हवा में कठोरीकरण के गुण तथा काटने की क्षमता बढ़ाने के लिए 1ह प्रतिशत तक वैनेडियम उच्चवेग यांत्रिक इस्पात में प्रयुक्त होता है। एक प्रकार के प्रसिद्ध उच्चवेग इस्पात में वैनेडियम 4.5 जैसे ऊँचे अनुपात में रहता है।
ज़िरकोनियम - कुछ उच्च क्रोमियम-निकल तथा ऑस्टेनाइटमय 18 : 8 प्रकार के इस्पात में, मुक्त कटने के गुण देने के लिए, थोड़ी मात्रा में यह तत्त्व गंधक के साथ प्रयुक्त होता है।
निम्न-मिश्र-धात्वीय, उच्च-तनाव-पुष्ट, भवन-निर्माण-इस्पात
[संपादित करें]प्रामाणिक ब्योरे के अनुसार इन इस्पातों की अंतिम तनाव-पुष्टता 37-43 टन प्रति वर्ग इंच है, तथा त्रोटनविंदु (वह सीमा जिसपर छड़ टूटता है)। मोटी छड़ के लिए 23 टन प्रति वर्ग इंच है। ये इस्पात मोटे तौर पर निम्नलिखित वर्गो में रखे जा सकते हैं:
(1) सिलिकन इस्पात,
(2) मैंगनीज़ इस्पात,
(3) ताँबे की थोड़ी मात्रा के साथ मैंगनीज़ इस्पात।
(4) मैंगनीज़, क्रोमियम तथा ताँबे की मिलावट का इस्पात,
वर्ग 1 : सिलिकन इस्पात की, जिसकी मौलिकता अमरीकी है, अंतिम तनाव-पुष्टता 37.7-42.4 टन प्रति वर्ग इंच तथा निम्नतम त्रोटनबिंदु 20.1 टन प्रति वर्ग इंच है। इसकी तनावपुष्टता कारबन की ऊँची मात्रा के कारण उत्पन्न होती है (0.4% तक)।
वर्ग 2 : इस समूह के इस्पात अधिकतर मैंगनीज़ की मात्रा (लगभग 1.25%) पर निर्भर हैं।
वर्ग 3 : सामान्यत: 0.25% से 0.5% तक ताँबे की मिलावट होने पर वर्ग (2) के समान ही इस वर्ग की भी साधारण प्रकृति होती है। मैंगनीज़ के साथ ताँबे की मात्रा संक्षारण-प्रतिरोध बढ़ाती है, जो नर्म इस्पात की अपेक्षा 30-40% अधिक हो जाती है।
वर्ग 4 : इस वर्ग के इस्पात में मैंगनीज़, क्रोमियम तथा ताँबा मिश्रित रहता है। इसमें ऊँचा त्रोटनविंदु तथा साथ ही उन्नत संक्षारण अवरोध मिलता है।
वायुयान मोटर तथा गाड़ियों के इंजन का इस्पात
[संपादित करें]मोटरगाड़ियों की क्रैंक धुरी सदैव पीटकर ही तैयार की जाती है तथा 45-65 टन प्रति वर्ग इंच की साधारण सीमा तक तनाव-पुष्टता प्राप्त करने के लिए उष्माउपचारित होती है। आवश्यक इस्पात का चुनाव पुरजे की प्रधान मोटाई पर निर्भर है। छोटी क्रैंक धुरी के लिए 0.40% कारबन इस्पात, बिना निकल के या 1.0% निकल सहित, अथवा निम्न मिश्रधात्वीय मैंगनीज़-मालिब्डीनम इस्पात को प्राथमिकता दी जाती है। भारी क्रैंक धुरियाँ निकल-क्रोमियम-मालिब्डीनम इस्पात की बनती हैं, जो 55-65 टन प्रति वर्ग इंच तनाव-पुष्टता के लिए उष्मा-उपचारित रहती हैं। निकल-क्रोमियम इस्पात में, जो पानी चढ़ाई हुई अवस्था में उपयुक्त होता है, पानी चढ़ाने पर भुरभुरापन बचाने के लिए मालिब्डीनम की मिलावट एक मानक प्रचलन है।
हवाई इंजन की क्रैंक धुरी के लिए नाइट्राइडिंग इस्पातों का उपयोग प्रचलित है। ये क्रोमियम मालिब्डीनम इस्पात होते हैं जो 60-70 टन प्रति वर्ग इंच तनाव-पुष्टता तक उष्मा-उपचारित किए जाते हैं।
मोटर में संबंधक दंडों (कनेÏक्टग रॉड) को मध्यम कारबन या मैंगनीज-मालिब्डीनम इस्पात से, जो 45-65 टन प्रति वर्ग इंच तनाव-पुष्टता तक उष्मा-उपचारित होते हैं, पीटकर बनाया जाता है। हवाई इंजन के संबंधक दंड के लिए 3.5% निकल इस्पात, 55-65 टन प्रति वर्ग इंच तनाव-पुष्टता देने के लिए उपचारित, तथा निकल-क्रोमियम-मालिब्डीनम इस्पात, 65-70 टन प्रति वर्ग इंच तनाव-पुष्टता तक उपचारित, अनुकूल हैं।
मोटर के वाल्वों के लिए 3.5% सिलिकन और 8.5% क्रोमियम वाले इस्पात का उपयोग होता है तथा कभी-कभी ऑस्टेनाइटमय इस्पात, जिसमें 13% क्रोमियम, 13% निकल, 2.5% टंग्स्टन तथा 0.4% कारबन होता है, निष्कासक (एग्ज़ॉस्ट) वाल्व के लिए प्रयुक्त होता है।
क्रैंक धुरी तथा टैपट पृष्ठकठोरीकृत इस्पात के बनाए जाते हैं, जिसमें 5% निकल इस्पात अथवा 4% निकल और 1.3% क्रोमियमवाले इस्पात का प्रयोग होता है।
दाँतीदार चक्रों का विनाश थकान (फ़ैटीग) से उतना नहीं होता जितना घिसने के कारण। ये अधिकतर पृष्ठकठोरीकृत इस्पात से बनाए जाते है; जैसे 0.20-0.28% कारबन सहित 2 प्रतिशत निकल मोलिब्डीनम इस्पात, 3% निकल इस्पात अथवा 5% निकल इस्पात।
गैर टर्बाइन इस्पात
[संपादित करें]इस कार्य में प्रयुक्त सामग्री मोटे तौर पर तीन श्रेणियों में विभक्त की जा सकती है। इनमें से पहला फेरिटिक (पर्लिटिक) या अन्-आस्टेनाइटमय वर्ग कहा जा सकता है, जिसमें वे मिश्र धातुएँ हैं जो उदाहरणत: 600 डिग्री सें. अधिकतम ताप तक कार्य के लिए अनुकूल हैं।
दूसरी श्रेणी में वे मिश्र धातुएँ हैं जिनका विकास प्रधानत: चिप्पड़ न बनने देने की ऊँची क्षमता के लिए हुआ है तथा जिनकी भार सँभालने की क्षमता पर अधिक ध्यान नहीं दिया गया है। इस वर्ग में आनेवाले इस्पातों की रासायनिक संरचना में अधिक अंतर है। फेरिटिक तथा आस्टेनाइटमय दोनों प्रकार की मिश्र धातुएँ इसी में हैं। कम शक्ति के अंतर्दह इंजन में वाल्व-इस्पात के रूप में प्रयुक्त होनेवाले सादे 6% क्रोमियम इस्पात से लेकर ढाले अथवा पीटकर बनाए गए 65% निकल और 18% क्रोमियमवाली मिश्र धातुओं तक, जो नमक के घोलवाले उष्मकों में तथा अन्य संक्षारक परिस्थितियों में उच्च ताप पर प्रयोग के लिए उपयुक्त होती हैं, इस वर्ग में सम्मिलित हैं।
तीसरी श्रेणी में वे आस्टेनाइटमय मिश्र धातुएँ आती हैं जो 600 डिग्री सें. से ऊपर के ताप पर धीरे-धीरे होनेवाले स्वत: परिवर्तन के विरुद्ध ऊँची प्रतिरोधक श्क्ति के लिए ही बनाई गई हैं। इस स्थिति में मोरचा तथा चिप्पड़ न बनने देने की अच्छी क्षमता भी आवश्यक है। इस तृतीय वर्ग का आधारभूत पदार्थ प्रसिद्ध 18% क्रोमियम और 8% निकलवाला "स्टेनलेस" इस्पात है, परंतु कुछ नवीन तथा श्रेष्ठ मिश्र धातुएँ अति जटिल प्रकृति की हैं। इनमें लोहा केवल अल्प मात्रा में ही एक अशुद्धि के रूप में रहता है।
वाष्प टर्बिन के लिए इस्पात
[संपादित करें]आधुनिक वाष्प टर्बिन, परिशुद्ध मशीन किए हुए ऐसे अंगों से बनी रहती है जिन्हें उच्च ताप पर अत्यधिक तनाव तथा बहुधा कठिन संक्षारण की स्थिति सहन करनी पड़ती है तथा जो लंबी अवधि तक लगातार कार्य में लगे रहते हैं। टर्बिन की धुरी पीटकर बनाए गए, तेल में बुझाकर कठोर किए गए तथा कुछ पानी उतारे हुए कारबन इस्पात की होती है, जिसमें कारबन लगभग 0.4% तथा मैंगनीज़ 0.5 से 1.0% तक होता है। उच्च दबाववाले टर्बिन की धुरी आंतरिक तनाव रहित किए तथा पानी चढ़े कारबन-मालिब्डीनम-वैनेडियम इस्पात से बनती है। टर्बिन के सिलिंडर के लिए प्राय: सादा का रबनवाले अथवा कारबन-मैंगनीज़-वाले (मैंगनीज़ 1.4-1.8%) इस्पात का उपयोग होता है। केवल उन सिलिंडरों के लिए जो अति उच्च ताप पर कार्य करते हैं 0.5% मालिब्डीनम इस्पात की आवश्यकता पड़ती है। ब्लेड के लिए विविध स्टेनलेस इस्पात तथा ऊँची निकल मिश्रधातुएँ प्रयुक्त हुई हैं। आजकल सबसे अधिक प्रयुक्त होनेवाला पदार्थ 13% क्रोमियम-निम्न-कार्बन इस्पात है।
बायलर
[संपादित करें]आजकल के बायलर 6000 सें. तक ताप तथा 3,200 पाउंड प्रति वर्ग इंच से अधिक दाब पर कार्य करते हैं। ढोल (ड्रम) सरल कारबन-इस्पात, अथवा 3% निकल, 0.7% क्रोमियम और 0.6% मालिब्डीनमवाले इस्पात से लवंगित (रिवेट) करके, अथवा वेल्ड करके, अथवा तप्त पीटकर बनाए जाते हैं। बायलर की नलियाँ प्राय: कारबन-इस्पात, अथवा क्रोमियम-मालिब्डीनम इस्पात की ठोस खिंची हुई होती हैं।
दाबसह बरतन
[संपादित करें]आधुनिक रासायनिक उद्योग में रासायनिक क्रिया कराने तथा विभिन्न गैसों को रखने के लिए दाबसह बरतनों की आवश्यकता पड़ती है। इन बरतनों के लिए उपयुक्त पदार्थ तीन वर्ग के होते हैं: कारबन इस्पात, मिश्रधातु इस्पात तथा स्टेनलेस इस्पात। सामान्यत: मध्यम तनाव-पुष्ट इस्पात, जिनमें मैंगनीज़ की मात्रा 1.5 से 1.8% तक तथा 0.25% कारबन रहता है तथा जिनकी तनाव-पुष्टता 37 से 45 टन प्रति वर्ग इंच तक होती है, मध्यम तथा उच्च दाब पर कार्य के लिए दाबसह बरतनों में उपयुक्त होते हैं।
रासायनिक उद्योग में इस्पात
[संपादित करें]सदैव विकसित होती हुई नई रासायनिक विधियों के कारण तथा उन विशेष, नवीन परिस्थितियों का सामना करने के लिए जो इन विधियों में उपस्थित होती है, विभिन्न प्रकार के इस्पात तथा अन्य धातुओं का उपयोग होता है। रासायनिक उद्योग में माल रखने के बरतनों, अनेक मशीनों और बहुत प्रकार के निर्माण बरतनों तथा नलियों आदि के लिए नरम इस्पात ही अत्यधिक प्रयुक्त होता है। क्रोमियम तथा क्रोमियम-निकल आस्टेनाइटमय संक्षारण अवरोधक इस्पात का उपयोग रासायनिक उद्योग में बहुत हैं। प्रचलित इस्पात की रासायनिक संरचना में 18% क्रोमियम, 8% निकल तथा लगभग 0.18% कारबन रहता है तथा इसे टाइटेनियम या नियोबियम की सहायता से स्थायीकृत कर दिया जाता है। परंतु ऐसे इस्पात का संक्षारण-अवरोध 2.5-3% माल्ब्डिीनम मिलाने से अतयधिक बढ़ जाता है। रासायनिक उद्योग में उच्च ताप पर कार्य के लिए 25% क्रोमियम तथा 20% निकलवाला इस्पात व्यवहृत होता है।
औजार तथा ठप्पे (tools & dies) के लिए इस्पात
[संपादित करें]आधुनिक उत्पादन-विधियों का विकास औजार बनाने में काम आनेवाले ऐसे इस्पात की उन्नति पर ही बहुत कुछ निर्भर रहा है जो उत्तरोत्तर कठिन परिस्थितियों में भी कार्य कर सके।
वैसे तो औजारी इस्पात अगणित प्रकार के हैं, पर उन्हें सुविधापूर्वक इन सात समूहों में बाँटा जा सकता है:
(1) सादे कारबन औजारी इस्पात,
(2) निम्न मिश्रधात्वीय औजारी इस्पात,
(3) तेल में बुझाकर कठोर किया जानेवाला औजारी मैंगनीज़ इस्पात,
(4) आघात-प्रतिरोधक औजारी इस्पात,
(5) उच्चकारबन उच्चक्रोमियम मिश्रधातु,
(6) उच्च वेग इस्पात तथा गरम ठप्पे का इस्पात,
(7) निकल-क्रोमियम-मालिब्डीनम इस्पात।
ऊपर दिए हुए एक या अधिक मौलिक गुण, इनमें से प्रत्येक समूह में अधिक अंश तक पाए जाते हैं।
सादा कारबन औजारी इस्पात
[संपादित करें]एक बार पानी में बुझाकर इसका पृष्ठ कठोर, कोमल तथा साधारण कठोरता का बनाया जा सकता है।
निम्न मिश्रधात्वीय औजारी इस्पात
[संपादित करें]कारबनवाले औजारी इस्पात में 0.2 से 0.5% तक वैनेडियम की उपस्थिति दानेदार होना रोकती है तथा कठोरीकरण की क्षमता को लाभदायक सीमा तक बढ़ती है। 1.5% क्रोमियम मिलाने से कठोरीकरण की क्षमता तथा घर्षण-अवरोध बढ़ता है और यदि मैंगनीज़ 0.5 तथा 0.75% के बीच में स्थिर रखा जाए तो यह तेल में बुझाकर कठोरीकरण योग्य इस्पात हो जाता है। 1.2% कारबन तथा 1.3% टंग्स्टनवाला इस्पात, जो प्राय: धातुकट आरी के फल (हैकसॉ ब्लेड) के लिए प्रयुक्त होता है, इसका एक अच्छा उदाहरण है।
तेल में बुझाकर कठोरीकरण योग्य मैंगनीज़ औजारी इस्पात
[संपादित करें]तेल में बुझाकर कठोरीकृत प्रामाणिक इस्पात में 0.8-1.0% कारबन तथा 1.0-2.0% मैंगनीज़ रहता है।
आघात प्रतिरोधक इस्पात
[संपादित करें]इस प्रकार के इस्पातों में से सरलतम इस्पात में 0.6% कारबन, 0.6% मैंगनीज़ तथा 0.4-1.4% क्रोमियम रहता है। जिसमें अधिक क्रोमियम रहता है वह मोटे यंत्रों के लिए उपयुक्त होता है।
उच्चकारबन, उच्चक्रोमियम मिश्रधातु
[संपादित करें]प्रामाणिक मिश्रधातु में 2.2-2.4% कारबन तथा 12-14% क्रोमियम रहता है। इसमें उच्च घर्षण-अवरोध तथा उच्च संक्षारण-अवरोध का गुण होता है। यह तेल में बुझाकर कठोर किया जा सकता है, परंतु 1% मालिब्डीनम की मिलावट इसे वायु में कठोरीकरण योग्य मिश्रधातु बना देती है।
उच्च वेग तथा गर्म ठप्पे के लिए उपयुक्त इस्पात
[संपादित करें]ऊँचे ताप पर कार्य करते समय अच्छी कठोरता तथा काटने का धार सुरक्षित रखने की क्षमता ही उच्चवेग इस्पात का मुख्य गुण है। अधिक उपयोग में आनेवाले इस प्रकार के इस्पात में लगभग 0.75% कारबन, 1.8% टंगस्टन, 4% क्रोमियम तथा 1.5% वैनेडियम रहता है।
निकल-क्रोमियम-मालिब्डीनम इस्पात
[संपादित करें]0.3-0.6% कारबन, 4% निकल, 1.3% क्रोमियम तथा 0.3% मालिब्डीनम सहित इस्पातों में अत्यधिक चिमड़ापन (टफ़नेस) होता है।
चुंबकयुक्त यंत्रों के बहुत से ऐसे कार्यो में जहाँ पहले केवल विद्युच्चुंबक ही व्यवहृत होते थे, अब नवीन खोजों के कारण, स्थायी चुंबक सफलतापूर्वक प्रयुक्त होते हैं। चुंबक इस्पात दो वर्गो में विभाजित किया जा सकता है - वह जो मॉर्टेनसिटिक इस्पात होता है तथा वह जिसमें अवक्षेपण की विधि द्वारा चुंबकीय कठोरता उत्पन्न की जाती है। मार्टेनसिटिक इस्पात क्रोमियम इस्पात (कारबन 0.9%, क्रोमियम 3.5%), टंग्स्टन इस्पात (कारबन 0.7%, क्रोमियम 0.3% तथा टंगस्टन 6%) तथा कोबल्ट इस्पात (35% कोबल्ट, 1% कारबन, 5-9% क्रोमियम, लगभग 1% टंग्स्टन और 1.5% मालिब्डीनम) को मिलाकर बनाया जाता है। अवक्षेपण द्वारा कठोरीकृत मिश्रधातुओं में ऐल्युमिनियम, निकल, कोबल्ट तथा ताँबा, कुछ टाइटेनियम, नियाबयम या मालिब्डीनम के साथ रहते हैं।
1900 ई. तक, साधारण उपयोग में, लोहा ही अकेले "नरम" लौहचुंबकीय वस्तु था। तत्पश्चात् अनेक मिश्रधातुओं का प्रवेश हुआ, जिनमें समुचित ऊष्मा उपचार से ऊँची प्रारंभिक चुबकशीलता (पमिएबिलिटी) तथा निम्न मंदायन (हिस्टेरीसिस) हानि उत्पन्न होती है! इन्हें पार-मिश्रधातु कहते हैं। निकल-लोहा की बहुत सी मिश्रधातुएँ, जिनमें दूसरी धातुओं की अल्प प्रतिशत में ही मिलावट रहती है, इस क्षेत्र में अति श्रेष्ठ ठहरी हैं। इन मिश्रधातुओं में 35-90% निकल रहता है तथा इनमें मिलाई जानेवाली प्रधान धातुएँ मालिब्डीनम, क्रोमियम तथा ताँबा है।
इंजीनियरी में ऐसे इस्पात तथा मिश्रधातुओं के अनेक उपयोग हैं, जो यांत्रिक तनाव सह सके या सहारा दे सकें, परंतु आसपास में चुंबकीय क्षेत्र की वृद्धि न करें। इनकी चुंबक-प्रवृत्ति (ससेप्टिाबलिटी) को लगभग शून्य तथा चुबंकशीलता को लगभग इकाई तक पहुँचना चाहिए। इस कार्य में प्रयुक्त होनेवाले पदार्थ निम्नलिखित हैं: (1) आस्टेनाइटमय मिश्रधातु ढलवाँ लोहा तथा इस्पात, (2) तापसमकारा मिश्रधातु जिनमें प्रधानत: निकल (30-36%) और लोहा (59-70%) रहता है तथा साथ में कभी कभी मैंगनीज़ या क्रोमियम (5%) होता है, तथा (3) निश्चुंबकीय इस्पात (कारबन 0.45%, मैंगनीज़ 8.5-9.5%, निकल 7.5-8.5%, क्रोमियम 3.0-3.5%)।
अकलुष इस्पात (स्टेनलेस स्टील)
[संपादित करें]यह मिश्रधातुओं के उन समूहों का प्रतिनिधि है जो वायुमंडल तथा कार्बनिक और अकार्बनिक अम्लों से कलुषित (खराब) नहीं होते हैं। साधारण इस्पात की अपेक्षा ये अधिक ताप भी सह सकते हैं। इस्पात में ये गुण क्रोमियम मिलाने से उत्पन्न होते हैं। क्रोमियम इस्पात के बाह्य तल को निष्क्रिय बना देता है। प्रतिरोधी शक्ति की वृद्धि के लिए इसमें निकल भी मिलाया जाता है। निकल के स्थान पर अंशत: या पूर्णत: मैंगनीज़ का भी उपयोग किया जाता है। अकलुष इस्पात के निर्माण में लोहे में कभी-कभी ताम्र, कोबाल्ट, टाइटेनियम, नियोबियम, टैंटालियम, कोलंबियम, गंधक और नाइट्रोजन भी मिलाया जाता है। इनकी सहायता से विभिन्न रासायनिक, यांत्रिक और भौतिक गुणों के अकलुष इस्पात बनाए जा सकते हैं।
विस्तृत विवरण के लिये देखें - स्टेनलेस स्टील
इन्हें भी देखें
[संपादित करें]बाहरी कड़ियाँ
[संपादित करें]- World Steel Association (worldsteel)
- steeluniversity.org: Online steel education resources from worldsteel and the University of Liverpool
- Extensive picture gallery of iron and steel production methods in North America and Europe. In German and English.
- Steel Mart (Steel Supplier)
सन्दर्भ
[संपादित करें]- ↑ Prawoto, Yunan (2013). Integration of Mechanics into Materials Science Research: A Guide for Material Researchers in Analytical, Computational and Experimental Methods. Lulu.com. ISBN 9781300712350.
- ↑ "इस्पात की महत्ता". Archived from the original on 4 अगस्त 2020. Retrieved 25 दिसंबर 2021.
{{cite web}}
: Check date values in:|access-date=
(help)