त्वरण

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज
विभिन्न प्रकार के त्वरण के अन्तर्गत गति में वस्तु की समान समयान्तराल बाद स्थितियाँ
दोलन करता हुआ लोलक : इसका वेग एवं त्वरण तीर द्वारा दर्शाया गया है। वेग एवं त्वरण दोनों का परिमाण एवं दिशा हर क्षण बदल रही है।

किसी वस्तु के वेग परिवर्तन की दर को त्वरण (Acceleration) कहते हैं। इसका मात्रक मीटर प्रति सेकेण्ड2 होता है तथा यह एक सदिश राशि हैं।

\vec a(t) = \frac{\mathrm{d}\vec v(t)}{\mathrm{d}t} \equiv \dot{\vec v}(t)

या,

\vec a(t) = \frac{\mathrm{d}^2\vec r(t)}{\mathrm{d} t^2} \equiv \ddot{\vec r}(t)

उदाहरण: माना समय t=० पर कोई कण १० मीटर/सेकेण्ड के वेग से उत्तर दिशा में गति कर रहा है। १० सेकेण्ड बाद उसका वेग बढ़कर ३० मीटर/सेकेण्ड (उत्तर दिशा में) हो जाता है। यह मानते हुए कि इस समयान्तराल में त्वरण का मान नियत है, त्वरण का मान

= (३० m/s - १० m/s) / १० सेकेण्ड = २ मीटर प्रति सेकेण्ड2 होगा।

स्पर्शरेखीय तथा अभिकेंद्रीय त्वरण[संपादित करें]

वक्र गति में त्वरण के घटक : स्पर्शरेखीय त्वरण (at, वेग की दिशा में) तथा अभिकेन्द्रीय त्वरण (ac, वेग के लम्बवत दिशा में)

किसी वक्र पथ पर गति करते हुए कण का वेग समय के फलन के रूप में निम्नलिखित प्रकार से लिखा जा सकता है-

\mathbf{v} (t) =v(t) \frac {\mathbf{v}(t)}{v(t)} = v(t) \mathbf{u}_\mathrm{t}(t),

जहाँ v(t) पथ की दिशा में वेग है, तथा

\mathbf{u}_\mathrm{t} = \frac {\mathbf{v}(t)}{v(t)} \,

गति की दिशा में गतिपथ के स्पर्शरेखीय इकाई सदिश है। ध्यान दें कि यहाँ v(t) तथा ut दोनों समय के साथ परिवर्तन्शील हैं, त्वरण की गणना निम्नलिखित प्रकार से की जायेगी:[1]

\begin{alignat}{3}
\mathbf{a} & = \frac{\mathrm{d} \mathbf{v}}{\mathrm{d}t} \\
           & =  \frac{\mathrm{d}v }{\mathrm{d}t} \mathbf{u}_\mathrm{t} +v(t)\frac{d \mathbf{u}_\mathrm{t}}{dt} \\
           & = \frac{\mathrm{d}v }{\mathrm{d}t} \mathbf{u}_\mathrm{t}+ \frac{v^2}{r}\mathbf{u}_\mathrm{n}\, \\
\end{alignat}

जहाँ un इकाई नॉर्मल सदिश (अन्दर की तरफ) है तथा r उस क्षण पर वक्रता त्रिज्या है। त्वरन के इन दो घटकों को क्रमशः स्पर्शरेखीय त्वरण (tangential acceleration) तथा नॉर्मल त्वरन या त्रिज्य त्वरण या अभिकेन्द्रीय त्वरण (centripetal acceleration) कहते हैं।

कुछ विशिष्ट स्थितियाँ[संपादित करें]

सन्दर्भ[संपादित करें]

इन्हें भी देखें[संपादित करें]

बाहरी कड़ियाँ[संपादित करें]