सामग्री पर जाएँ

"विद्युत चुम्बक": अवतरणों में अंतर

मुक्त ज्ञानकोश विकिपीडिया से
ANSWER ME )NHI LAGTA HAI
टैग: यथादृश्य संपादिका मोबाइल संपादन मोबाइल वेब संपादन
नूतन सामग्री और तथ्य जोड़ी गई।
टैग: यथादृश्य संपादिका मोबाइल संपादन मोबाइल वेब संपादन उन्नत मोबाइल संपादन
पंक्ति 4: पंक्ति 4:
| direction = horizontal
| direction = horizontal
| image1 = Simple electromagnet2.gif
| image1 = Simple electromagnet2.gif
| caption1 = एक सरल विद्युतचुम्बक<ref name="Hyperphysics">{{cita web | apellido = Nave | nombre = Carl R. | título = Electromagnet | obra = Hyperphysics | editorial = Dept. of Physics and Astronomy, Georgia State Univ. | fecha = 2012 | url = http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/elemag.html | fechaacceso = 17 de septiembre de 2014 | urlarchivo = https://web.archive.org/web/20140922065602/http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/elemag.html | fechaarchivo = 22 सितंबर 2014 }}</ref>
| caption1 = एक सरल विद्युच्चुम्बक<ref name="Hyperphysics">{{cita web | apellido = Nave | nombre = Carl R. | título = Electromagnet | obra = Hyperphysics | editorial = Dept. of Physics and Astronomy, Georgia State Univ. | fecha = 2012 | url = http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/elemag.html | fechaacceso = 17 de septiembre de 2014 | urlarchivo = https://web.archive.org/web/20140922065602/http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/elemag.html | fechaarchivo = 22 सितंबर 2014 }}</ref>
| width1 = 160
| width1 = 160
| image2 = VFPt Solenoid correct2.svg
| image2 = VFPt Solenoid correct2.svg
पंक्ति 11: पंक्ति 11:
| footer =
| footer =
}}
}}

[[विद्युत धारा]] के प्रभाव से जिस लोहे में चुंबकत्व उत्पन्न होता है, उसे '''विद्युत चुंबक''' कहते हैं। इसके लिये लोहे पर तार लपेटकर उस तार से विद्युत् धारा बहाकर लोहे को चुंबकित किया जा सकता है। (लोहे पर चुंबक रगड़कर लोहे को चुंबकीय किया जा सकता है जो विद्युत चुम्बकत्व नहीं है
'''विद्युच्चुम्बक''' एक प्रकार का [[चुम्बक]] है जिसमें [[विद्युत धारा|वैद्युतिक प्रवाह]] द्वारा [[चुम्बकीय क्षेत्र]] उत्पन्न होता है। विद्युच्चुम्बक में सामान्यतः एक [[विद्युत्-चुम्बकीय कुंडली|कुण्डली]] में तार लपेटा जाता है। तार के माध्यम से वैद्युतिक धारा एक चुम्बकीय क्षेत्र बनाता है जो कुण्डली के केन्द्र के छिद्र में केन्द्रित होता है। धारा बन्द होने पर चुम्बकीय क्षेत्र गायब हो जाता है। तार की वर्तनें प्रायः [[लौहचुम्बकत्व|लौहचुम्बकीय]] या [[फेरी चुम्बकत्व|फेरिचुम्बकीय]] सामग्री जैसे [[लौह]] से बने [[चुम्बकीय क्रोड]] के चारों ओर लपेटे जाते हैं। यह क्रोड [[चुम्बकीय अभिवाह]] को केन्द्रित करता है और अधिक शक्तिशाली चुम्बक बनाता है।<ref>{{Cite web|url=https://web.archive.org/web/20140922065602/http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/elemag.html|title=Magnets and Electromagnets|date=2014-09-22|website=web.archive.org|access-date=2023-03-11}}</ref>

एक [[स्थायी चुम्बक]] की अपेक्षाकृत एक विद्युच्चुम्बक का मुख्य लाभ यह है कि वर्तनों में विद्युत प्रवाह की मात्रा को नियन्त्रित करके चुम्बकीय क्षेत्र को शीघ्र बदला जा सकता है। यद्यपि, एक स्थायी चुम्बक के विपरीत, जिसे किसी [[विद्युत शक्ति|शक्ति]] की आवश्यकता नहीं होती है, एक विद्युच्चुम्बक को चुम्बकीय क्षेत्र को बनाए रखने के लिए वर्तमान की निरन्तर आपूर्ति की आवश्यकता होती है।

विद्युच्चुम्बक का व्यापक रूप से अन्य विद्युत उपकरणों के घटकों के रूप में उपयोग किया जाता है, जैसे कि [[विद्युत मोटर|मोटर]], [[विद्युत जनित्र|जनित्र]], [[परिनालिका]], [[रिले|रीले]], [[लाउडस्पीकर]], [[हार्ड डिस्क ड्राइव|हार्ड डिस्क]], [[चुम्बकीय अनुनाद प्रतिबिम्ब]] यन्त्र, वैज्ञानिक उपकरण और चुंबकीय पृथक्करण उपकरण। विद्युच्चुम्बकों का प्रयोग उद्योग में रद्दी लोहा और [[इस्पात]] जैसी भारी लौह वस्तुओं को उठाने और ले जाने के लिए भी किया जाता है।<ref>{{Cite book|url=https://books.google.com/books?id=k81ECeMxyk8C&q=ferromagnetic+electromagnet&pg=PA404|title=Intelligent Mechatronic Systems: Modeling, Control and Diagnosis|last=Merzouki|first=Rochdi|last2=Samantaray|first2=Arun Kumar|last3=Pathak|first3=Pushparaj Mani|last4=Bouamama|first4=Belkacem Ould|date=2012-11-27|publisher=Springer Science & Business Media|isbn=978-1-4471-4628-5|language=en}}</ref>


== परिचय एवं इतिहास ==
== परिचय एवं इतिहास ==

04:24, 11 मार्च 2023 का अवतरण

एक सरल विद्युच्चुम्बक[1]
बायें के चित्र में दर्शायी गयी परिनालिका द्वारा उत्पन्न चुम्बकीय क्षेत्र

विद्युच्चुम्बक एक प्रकार का चुम्बक है जिसमें वैद्युतिक प्रवाह द्वारा चुम्बकीय क्षेत्र उत्पन्न होता है। विद्युच्चुम्बक में सामान्यतः एक कुण्डली में तार लपेटा जाता है। तार के माध्यम से वैद्युतिक धारा एक चुम्बकीय क्षेत्र बनाता है जो कुण्डली के केन्द्र के छिद्र में केन्द्रित होता है। धारा बन्द होने पर चुम्बकीय क्षेत्र गायब हो जाता है। तार की वर्तनें प्रायः लौहचुम्बकीय या फेरिचुम्बकीय सामग्री जैसे लौह से बने चुम्बकीय क्रोड के चारों ओर लपेटे जाते हैं। यह क्रोड चुम्बकीय अभिवाह को केन्द्रित करता है और अधिक शक्तिशाली चुम्बक बनाता है।[2]

एक स्थायी चुम्बक की अपेक्षाकृत एक विद्युच्चुम्बक का मुख्य लाभ यह है कि वर्तनों में विद्युत प्रवाह की मात्रा को नियन्त्रित करके चुम्बकीय क्षेत्र को शीघ्र बदला जा सकता है। यद्यपि, एक स्थायी चुम्बक के विपरीत, जिसे किसी शक्ति की आवश्यकता नहीं होती है, एक विद्युच्चुम्बक को चुम्बकीय क्षेत्र को बनाए रखने के लिए वर्तमान की निरन्तर आपूर्ति की आवश्यकता होती है।

विद्युच्चुम्बक का व्यापक रूप से अन्य विद्युत उपकरणों के घटकों के रूप में उपयोग किया जाता है, जैसे कि मोटर, जनित्र, परिनालिका, रीले, लाउडस्पीकर, हार्ड डिस्क, चुम्बकीय अनुनाद प्रतिबिम्ब यन्त्र, वैज्ञानिक उपकरण और चुंबकीय पृथक्करण उपकरण। विद्युच्चुम्बकों का प्रयोग उद्योग में रद्दी लोहा और इस्पात जैसी भारी लौह वस्तुओं को उठाने और ले जाने के लिए भी किया जाता है।[3]

परिचय एवं इतिहास

कारखाने में सामान उठाने के लिये प्रयुक्त विद्युतचुम्बक

सन् 1820 ई. में अस्टेंड (Oersted) ने आविष्कार किया कि विद्युत् धारा का प्रभाव चुंबकों पर पड़ता है। इसके बाद ही उसी साल ऐंरेगो (Arago) ने यह आविष्कार किया कि ताँबे के तार में बहती हुई विद्युत् धारा के प्रभाव से इसके निकट रखे लोहे और इस्पात के टुकड़े चुंबकित हो जाते हैं। उसी साल अक्टूबर महीने में सर हंफ्री डेवी (Sir Humphrey Davy) ने स्वतंत्र रूप से इसी तथ्य का आविष्कार किया। सन् 1825 ई. में इंग्लैंड के विलियम स्टर्जन (William Sturgeon) ने पहला विद्युत्-चुंबक बनाया, जो लगभग 4 किलो का भार उठा सकता था। इन्होंने लोहे की छड़ को घोड़े के नाल के रूप में मोड़कर उसपर विद्युतरोधी तार लपेटा। तार में बिजली की धारा प्रवाहित करते ही छड़ चुंबकित हो गया और धारा बंद करते ही छड़ का चुंबकत्व लुप्त हो गया। यहाँ छड़ के एक सिरे से दूसरे सिरे तक तार का एक ही दिशा में लपेटते जाते हैं, किंतु सिरों के सामने से देखने से मुड़ी हुई छड़ की एक बाहु पर धारा वामावर्त दिशा में चक्कर काटती है और दूसरी बाहु पर दक्षिणावर्त दिशा में। फलस्वरूप छड़ का एक सिरा उत्तर-ध्रुव और दूसरा दक्षिण ध्रुव बन जाता है।

स्टर्जन के प्रयोगों से प्रेरित होकर सन् 1831 में अमरीका के जोज़ेफ हेनरी (Joseph Henry) ने शक्तिशाली विद्युत् चुंबकों का निर्माण किया। उन्होंने लोहे की छड़ पर लपेटे हुए तारों के फेरों की संख्या बढ़ाकर विद्युत्चुंबक की शक्ति बढ़ाई। उन्होंने जो पहला चुंबक बनाया यह 350 किलो का भार उठा सकता था और इसके बाद उन्होंने जो दूसरा विद्युत् चुंबक बनाया, वह 1,000 किलोग्राम का भार उठा सकता था। उनके विद्युत् चुंबकों को कई सेल की बैटरी की धारा से ही उपर्युक्त प्रबल चुंबकत्व प्राप्त होता था। इसके बाद तो इससे भी शक्तिशाली विद्युत् चुंबकों का उत्तरोत्तर निर्माण होता गया। सन् 1891 ई. में डु बॉय (Du Bois) ने एक बड़े विद्युत् चुंबक का निर्माण किया। इस विद्युत् चुंबक के क्रोड (core) (लोहे की छड़) पर तार के 2,400 फेरे लपेटे गए और जब तार से 50 ऐंपियर की विद्युत् धारा प्रवाहित की गई, तो इस विद्युत् चुंबक के बीच 40 हजार गाउस का प्रबल चुंबकीय क्षेत्र उत्पन्न हुआ। इस विद्युत् चुंबक के ध्रुव शंकु के आकार के थे और एक दूसरे के सम्मुख थे। ध्रुवों के बीच की खाली जगह की लंबाई 1 मिमी और व्यास 6 मिमी था। डू बायस ने जो सबसे बड़ा चुंबक बनाया, उसका वजन 27 हंड्रेडवेट था और उसके ध्रुवों के बीच 3 मिमी लंबी और 0.5 मिमी व्यास की जगह में 65 हजार गाउस का चुंबकीय क्षेत्र उत्पन्न होता था।

पी. वाइस (P. Weiss) ने भी अति बलशाली विद्युत् चुंबकों का निर्माण किया। इनके द्वारा निर्मित एक विद्युत् चुंबक में ताँबे की नलिका के 1,440 फेरे थे और उससे 100 ऐंपियर की धारा बहाई जाती थी। नलिका के अंदर से पानी बहाकर उसे ठंढा रखा जाता था। डू बॉय के विद्युत्-चुंबक में भी लपेटे हुए तार खोखली नालिका के रूप में होते थे और नालिका के अंदर पानी बहाकर उसे ठंढा रखा जाता था।

विद्युत् चुंबक के क्रोड के लिए ऐसे लोहे का व्यवहार होता है जिसकी चुंबकीय प्रवृत्ति ऊँची हो, चुंबकन धारा बंद कर देने पर क्रोड का अवशेष चुंबकत्व निम्नतम हो और वह शीघ्र ही चुंबकीय संतृत्ति न प्राप्त करे। विद्युत् चुंबक के क्रोड के लिए पिटवाँ लोहे, अथवा ढालवाँ नरम इस्पात, का व्यवहार किया जाता है। किंतु किसी भी प्रकार के लोहे का व्यवहार किया जाए, उसका चुंबकत्व एक निश्चित सीमा को नहीं पार कर सकता, चाहे चुंबकन धारा को कितना भी क्यों न बढ़ाया जाए। इसलिए अति प्रबल चुंबकीय क्षेत्र उत्पन्न करने के लिए कपित्ज़ा ने (Kapitza) तार को परिनालिका का व्यवहार किया, जिसका क्रोड वायु थी। इस परिनालिका में एक प्रबल जनित्र से 8,000 ऐंपियर की क्षणिक धारा 3/1000 सेकंड तक प्रवाहित कर उस परिनालिका के अंदर 3,20,000 गाउस का चुंबकीय क्षेत्र उत्पन्न किया।

कारखानों में विद्युत् चुंबक द्वारा भारी बोझों को उठाने का काम लिया जाता है। जिस बोझ को उठाना होता है, उसपर लोहे की पटरी बाँध देते हैं। विद्युत् चुंबक से धारा प्रवाहित करते ही विद्युत् चुंबक चुंबकित होकर लोहे की पटरी और पटरी से लगे बोझ को आकर्षित करके उठा लेता है। किसी विद्युत् चुंबक का बोझ उठाने का यह बल आगे दिये गये सूत्रों की सहायता से निकाला जा सकता है।

वैज्ञानिक अनुसंधानों में विद्युत् चुंबक का बहुत महत्वपूर्ण उपयोग होता रहा है। विद्युत् चुंबक की सहायता से फैरेडे ने प्रकाश संबंधी फैरेडे-प्रभाव, जेमान (Zeeman) ने ज़ेमान-प्रभाव और केर (Kerr) ने केर-प्रभाव का आविष्कार किया। आवेशित कणों को महान वेग प्रदान करने के लिए, साइक्लोट्रॉन, बीटाट्रॉन, सिंक्रोट्रॉन और बिवाट्रॉन इत्यादि अद्भुत यंत्र बने हैं। इनमें भी विशाल विद्युत् चुंबकों का व्यवहार होता है।

प्रति दिन काम आनेवाले अनेक यंत्रों और उपकरणों में छोटे बड़े विद्युत् चुंबकों का व्यवहार होता है। बिजली की घंटी में, टेलीग्राफ और टेलीफोन में विद्युत्-चुंबक का व्यवहार होता है, क्योंकि विद्युत्-चुंबक की यह विशेषता है कि उसमें विद्युत् धारा बहते ही वह चुंबकित हो जाता है और विद्युत् धारा के बंद होते ही विचुंबकित, तथा उसका चुंबकत्व, एक निश्चित सीमा के अंदर, उस विद्युत् चुंबक पर लपेटे तार में बहती हुई धारा का अनुपाती होता है। लाउडस्पीकर में, धारा जनित्रों में, बिजली के मोटरों में, बिजली के हॉर्न में और चुंबकीय क्लच में विद्युत्-चुंबक का व्यवहार होता है। वैद्युत परिपथ में विद्युत् चुंबक के द्वारा रिले का काम लिया जाता है, यानी दूर से ही दुर्बल धारा द्वारा सौ और हजार ऐंपियर धारा के स्विचों को दबा कर सौ और हजार ऐंपियर की धारा स्थापित की जाती है। अनेक प्रकार के स्वचालित यंत्रों में विद्युत् चुंबकों का उपयोग होता है।

चुम्बकीय पदार्थों पर लगने वाला बल

एक विद्युतचुम्बक का योजनामूलक चित्र

वास्तव में, लौहचुम्बकीय पदार्थों पर लगने वाले बल की गणना करना एक जटिल कार्य है। इसका कारण यह है कि वस्तुओं के आकार आदि भिन्न-भिन्न होते हैं जिसके कारण सभी स्थितियों में चुम्बकीय क्षेत्र की गणना के लिये कोई सरल सूत्र नहीं हैं। इसका अधिक शुद्धता से मान निकालना हो तो फाइनाइट-एलिमेन्ट-विधि का उपयोग करना पड़ता है। किन्तु कुछ विशेष स्थितियों के लिये चुम्बकीय क्षेत्र और बल की गणना के सूत्र दिये जा सकते हैं। उदाहरण के लिये, सामने के चित्र को देखें। यहाँ अधिकांश चुम्बकीय क्षेत्र, एक उच्च पारगम्यता (परमिएबिलिटी) के पदार्थ (जैसे, लोहा) में ही सीमित है। इस स्थिति के लिये अधिकतम बल का मान निम्नलिखित है-

जहाँ:

  • F, बल (न्यूटन में
  • B , चुम्बकीय क्षेत्र (चुम्बकीय फ्लक्स घनत्व) (टेस्ला में)
  • A, पोल का क्षेत्रफल (m² में);
  • , निर्वात की चुम्बकीय पारगम्यता

दिये हुए मामले में, हवा की पारगम्यता निर्वात की पारगम्यता के लगभग बराबर होती है। अतः , और इकाई क्षेत्रफल पर लगने वाला बल :

, B = 1 टेस्ला के लिये
, B = 2 टेस्ला के लिये

सामने दिये हुए चुम्बकीय परिपथ के लिये B का मान निम्नलिखित सूत्र द्वारा दिया जा सकता है-

जहाँ:

  • N विद्युतचुम्बक पर लपेटे गये फेरों (टर्न्स) की संख्या है
  • I इन फेरों में प्रवाहित विद्युत धारा का मान (एम्पीयर में)
  • L चुम्बकीय परिपथ की लम्बाई

इसे प्रतिस्थापित करने पर, निम्नलिखित सूत्र मिलता है-

शक्तिशाली विद्युतचुम्बक बनाने के लिये कम लम्बाई का चुम्बकीय पथ तथा अधिक्ष क्षेत्रफल वाला तल चाहिये। इसका कारण यह है कि अधिकांश लौहचुम्बकीय पदार्थ १ और २ टेस्ला के बीच संतृप्त हो जाते हैं (यह संतृप्तता H ≈ 787 amps × turns / meter के आसपास आ जाती है।) अतः इससे अधिक H वाला चुम्बक बनाने की कोशिश करना बेकार है।

यूनिवर्सल मोटर का स्टेटर जो चुम्बकीय क्षेत्र उत्पन्न करने के लिये लपेटा गया है।

सन्दर्भ

  1. साँचा:Cita web
  2. "Magnets and Electromagnets". web.archive.org. 2014-09-22. अभिगमन तिथि 2023-03-11.
  3. Merzouki, Rochdi; Samantaray, Arun Kumar; Pathak, Pushparaj Mani; Bouamama, Belkacem Ould (2012-11-27). Intelligent Mechatronic Systems: Modeling, Control and Diagnosis (अंग्रेज़ी में). Springer Science & Business Media. आई॰ऍस॰बी॰ऍन॰ 978-1-4471-4628-5.

इन्हें भी देखें

बाहरी कड़ियाँ