सहसम्बन्ध

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज
बिन्दुओं (x, y) के अनेक समुच्चयों के लिये सहसम्बन्ध के कुछ उदाहरण

सांख्यिकी एवं प्रायिकता के सन्दर्भ में सहसम्बन्ध (Correlation) का दो सांख्यिकीय चरों के बीच सम्बन्ध का माप है। यह बताता है कि दो चर आपस में कितना सम्बन्धित हैं।

सहसम्बन्ध गुणांक[संपादित करें]

दो चरों के परस्पर सम्बन्धों का सबसे अच्छा माप पियर्सन का सहसंबन्ध गुणांक (Pearson's correlation coefficient) है जिसे प्रायः सहसम्बन्ध गुणांक कहा जाता है। यह गुणांक दोनों चरों के सहप्रसरण को उनके मानक विचलनों के गुणनफल से भाग देने से प्राप्त होता है।

\rho_{X,Y}=\mathrm{corr}(X,Y)={\mathrm{cov}(X,Y) \over \sigma_X \sigma_Y} ={E[(X-\mu_X)(Y-\mu_Y)] \over \sigma_X\sigma_Y},

सहसम्बन्ध का मान +१ से कम और -१ से अधिक होता है। सहसम्बन्ध सममित होता है, अर्थात corr(X,Y) = corr(Y,X)। जब दोनों चरों में पूर्ण सीधा रैखिक सम्बन्ध (perfect direct (increasing) linear relationship) होता है तो सहसम्बन्ध का मान +१ होता है ; जब दोनों चरों में पूर्ण व्युत्क्रम रैखिक सम्बन्ध होता है तो सहसम्बन्ध का मान -१ होता है; अन्य स्थितियों में सहसम्बन्ध का मान -१ और +१ के बीच होता है। (ऊपर का चित्र देखें) जब सहसम्बन्ध का मान शून्य के निकट होता है तो इसका अर्थ यह है कि दोनों राशियों में बहुत कम सम्बन्ध है।

इन्हें भी देखें[संपादित करें]