सहप्रसरण

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज

प्रायिकता सिद्धान्त तथा सांख्यिकी में सहप्रसरण (covariance) वह माप है जो जो बताती है कि दो यादृच्छ चरों का परिवर्तन परस्पर कितना सम्बन्धित है। यदि एक चर का मान बड़ा होने पर दूसरे चर का मान भी बड़ा होता है और पहले चर का मान छोटा होने पर दूसरे का मान भी छोटा होता है तो सहप्रसरण धनात्मक होता है। यदि स्थिति इसके उल्टी है तो सहप्रसरण का मान ऋणात्मक होता है। किन्तु सहप्रसरण के मान का अर्थ निकालना सरल नहीं है।

परिभाषा[संपादित करें]

वास्तविक मान वाले दो यादृच्छ चरों x and y के बीच सहप्रसरण निम्नलिखित प्रकार से पारिभाषित है-


\sigma(x,y) = \operatorname{E}{\big[(x - \operatorname{E}[x])(y - \operatorname{E}[y])\big]},

जहाँ E[x] x का अनुमेय मान (expected value) (या माध्य) है।

इसको निम्नलिखित प्रकार से सरल किया जा सकता है-


\begin{align}
\sigma(x,y)
&= \operatorname{E}\left[\left(x - \operatorname{E}\left[x\right]\right) \left(y - \operatorname{E}\left[y\right]\right)\right] \\
&= \operatorname{E}\left[x y - x \operatorname{E}\left[y\right] - \operatorname{E}\left[x\right] y + \operatorname{E}\left[x\right] \operatorname{E}\left[y\right]\right] \\
&= \operatorname{E}\left[x y\right] - \operatorname{E}\left[x\right] \operatorname{E}\left[y\right] - \operatorname{E}\left[x\right] \operatorname{E}\left[y\right] + \operatorname{E}\left[x\right] \operatorname{E}\left[y\right] \\
&= \operatorname{E}\left[x y\right] - \operatorname{E}\left[x\right] \operatorname{E}\left[y\right].
\end{align}

सहप्रसरण के गुणधर्म[संपादित करें]

यदि X, Y, W, तथा V यादृच्छ चर हों तथा a, b, c, d नियतांक हों (यहाँ नियतांक का अर्थ है - जो यादृच्छ (रैण्डम) न हो) तो

  • \operatorname{Cov}(X, a) = 0 \,
  • \operatorname{Cov}(X, X) = \operatorname{Var}(X)\,, X का प्रसरण
  • \operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)\,
  • \operatorname{Cov}(aX, bY) = ab\, \operatorname{Cov}(X, Y)\,
  • \operatorname{Cov}(X+a, Y+b) = \operatorname{Cov}(X, Y)\,
  • \operatorname{Cov}(aX+bY, cW+dV) = ac\,\operatorname{Cov}(X,W)+ad\,\operatorname{Cov}(X,V)+bc\,\operatorname{Cov}(Y,W)+bd\,\operatorname{Cov}(Y,V)\,
  • \operatorname{Cov}(X, Y) = \operatorname{E}(XY) -\operatorname{E}(X)\operatorname{E}(Y), व्यवहार में यही सूत्र सहप्रसरण की गणना के लिये प्रयोग किया जाता है।

सहप्रसरण की गणना का उदाहरण[संपादित करें]

माना X बास्केटबाल के खिलाड़ियों की उँचाई है तथा Y उन खिलाड़ियों का भार है। इन आँकड़ों की सहायता से एक सारणी बनायी जा सकती है जिसमें माध्य से विचलन प्रदर्शित किया गया हो। इस सारणी की सहायता से सहप्रसरण की गणना की जा सकती है-

खिलाड़ी चर X=ऊँचाई, मीटर में चर Y=वजन, किग्रा में X का विचलन Y का विचलन विचलनों का गुणनफल
1) मोहन x_1=1{,}95 y_1=93{,}1 -0,038=1,95-1,988 -1,34=93,1-94,44 -0,038*-1,34=-+0,05092
2) किशोर 1,96 93,9 -0,028=1,96-1,988 -0,54=93,9-94,44 -0,028*-0,54=+0,01512
3) प्रतीक 1,95 89,9 -0,038 -4,54 -0,038*-4,54=+0,17252
4) विक्रम 1,98 95,1 -0,008 +0,66 -0,008*0,66=-0,00528
5) आदित्य 2,10 100,2 +0,112 +5,76 0,112*5,76=0,64512
योग {\color{Red}\sum_{x=1}^{N} x}= 1,95+1,96+...+2,10=9,94 {\color{Sepia}\sum_{y=1}^{N} y} =472{,}2 विचलनों का योग सदा शून्य के बराबर होता है। विचलनों का योग सदा शून्य के बराबर होता है। +0,05092+0,01512+0,17252-0,00528+0,64512=0,8784.
आंकड़ों की संख्या N = 5 N = 5 5 विचलन हैं 5 विचलन 5 गुणा किये गये।
माध्य \frac{{\color{Red}\sum_{x=1}^{N} x}}{N}=\frac{9{,}94}{5}=1{,}988 \dfrac{{\color{Sepia}\sum_{y=1}^{N} y}}{ N }=\frac{472,2}{5}=94{,}44 विचलनों का माध्य भी शून्य होता है। विचलनों का माध्य भी शून्य होता है। 0,8784/5=0,17568= X तथा Y का सहप्रसरण

इन्हें भी देखें[संपादित करें]