आंशिक अवकल समीकरण
इस लेख में सन्दर्भ या स्रोत नहीं दिया गया है। कृपया विश्वसनीय सन्दर्भ या स्रोत जोड़कर इस लेख में सुधार करें। स्रोतहीन सामग्री ज्ञानकोश के उपयुक्त नहीं है। इसे हटाया जा सकता है। (जून 2015) स्रोत खोजें: "आंशिक अवकल समीकरण" – समाचार · अखबार पुरालेख · किताबें · विद्वान · जेस्टोर (JSTOR) |
गणित में आंशिक अवकल समीकरण वो अवकल समीकरणें होती हैं जिनमें बहुचर फलन और उनके आंशिक अवकल होते हैं। (यह साधारण अवकल समीकरणों से भिन्न है जिनमें एक ही चर और उसके अवकलों में बंटा हुआ होता है। आंशिक अवकल समीकरणों का उपयोग उन समस्याओं को हल करने में प्रयुक्त किया जाता है जो विभिन्न स्वतंत्र चरों की फलन होती हैं एवं जिन्हें साधारणतया हल कर सकते हैं अथवा हल करने के लिए अभिकलित्र प्रोग्राम बनाया जा सके।
आंशिक अवकल समीकरणो का उपयोग विभिन्न दृष्टिगत घटनाओं यथा ध्वनि, ऊष्मा, स्थिरवैद्युतिकी, विद्युत-गतिकी, द्रव का प्रवाह, प्रत्यास्थता या प्रमात्रा यान्त्रिकी को समझने में किया जा सकता है। ये पृथक प्रतीत होने वाली प्रक्रियाओं को आंशिक अवकल समीकरणों के रूप में सूत्रित किया जा सकता है।
उदाहरण
[संपादित करें]निम्नलिखित समीकरण, आंशिक अवकल समीकरण का एक उदाहरण है-
- ,
जिसका सामान्य हल (जनरल सलूसन) निम्नलिखित है-
- .
जहाँ और यादृच्छिक (आर्बिट्रेरी) फलन हैं।
लाप्लास का समीकरण
[संपादित करें]तनी हुई डोरी का कम्पन
[संपादित करें]- पार्स नहीं कर पाये (सिन्टैक्स त्रुटि): {\displaystyle {\partial^2 u \over \partial x^2} + {\partial^2 u \over \partial y^2} + {\partial^2 u \over \partial z^2} = {1 \over c^2} {\partial^2 u \over \partial t^2}</math === फुर्रे (Fourier) का समीकरण === :<math>{\partial^2 u \over \partial x^2} + {\partial^2 u \over \partial y^2} + {\partial^2 u \over \partial z^2} = {1 \over \alpha}{\partial u \over \partial t}}
ऐडवेक्सन (advection) समीकरण
[संपादित करें]लैंगमूर (Langmuir ) का समीकरण
[संपादित करें]स्टोक्स (Stokes) का समीकरण
[संपादित करें]- ,
श्रोडिंगर (Schrödinger) का समीकरण
[संपादित करें]क्लीन और गॉर्डन (Klein-Gordon )का समीकरण
[संपादित करें]वर्गीकरण
[संपादित करें]दो ऑर्डर वाले आंशिक अवकल समीकरणों को परवलयी (parabolic), अतिवलयी (hyperbolic) और दीर्घवृत्तीय (elliptic) में विभक्त किया जाता है।
को मानते हुए, माना दो स्वतन्त्र चरों में, दो-ऑर्डर वाला, सामान्य PDE निम्नलिखित है-
जहाँ A, B, C आदि गुणांक x और y पर निर्भर हो सकते हैम। यदि xy-प्लेन के किसी क्षेत्र में हो, तो उस क्षेत्र में PDE द्वितीय-ऑर्डर वाला है। यह रूप शांकव (conic section) के समीकरण जैसा है:
दूसरे शब्दों में, , ∂x के स्थान पर X रखने पर, (और इसी प्रकार अन्य चरों के लिये भी करने पर) नियत गुणांक वाला PDE उसी डिग्री के एक बहुपद में परिवर्तित हो जाता है।
जिस प्रकार डिस्क्रिमिनेन्ट के आधार पर कोनिक सेक्शन्स को parabolic, hyperbolic, और elliptic में बाँटा जाता है, उसी तरह द्वितीय-ऑर्डर वाले PDE को भी वर्गीकृत किया जा सकता है। किन्तु PDE के केस में डिस्क्रिमिनेन्ट लिया जाता है।
- : solutions of elliptic PDEs are as smooth as the coefficients allow, within the interior of the region where the equation and solutions are defined. For example, solutions of Laplace's equation are analytic within the domain where they are defined, but solutions may assume boundary values that are not smooth. The motion of a fluid at subsonic speeds can be approximated with elliptic PDEs, and the Euler–Tricomi equation is elliptic where x < 0.
- : equations that are parabolic at every point can be transformed into a form analogous to the heat equation by a change of independent variables. Solutions smooth out as the transformed time variable increases. The Euler–Tricomi equation has parabolic type on the line where x = 0.
- : hyperbolic equations retain any discontinuities of functions or derivatives in the initial data. An example is the wave equation. The motion of a fluid at supersonic speeds can be approximated with hyperbolic PDEs, and the Euler–Tricomi equation is hyperbolic where x > 0.
If there are n independent variables x1, x2 , ..., xn, a general linear partial differential equation of second order has the form
The classification depends upon the signature of the eigenvalues of the coefficient matrix ai,j..
- Elliptic: The eigenvalues are all positive or all negative.
- Parabolic : The eigenvalues are all positive or all negative, save one that is zero.
- Hyperbolic: There is only one negative eigenvalue and all the rest are positive, or there is only one positive eigenvalue and all the rest are negative.
- Ultrahyperbolic: There is more than one positive eigenvalue and more than one negative eigenvalue, and there are no zero eigenvalues. There is only limited theory for ultrahyperbolic equations (Courant and Hilbert, 1962).