टोएपलित्ज़ आव्यूह

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज

रैखिक बीजावली में टोएपलित्ज़ आव्यूह (अंग्रेज़ी: Toeplitz matrix) अथवा नियत-विकर्ण आव्यूह का नामकरण ओटो टोएपलित्ज़ के सम्मान में किया गया एक ऐसा आव्यूह है जिसमें प्रत्येक अवरोही विकर्ण बायें से दाएं नियत रहता है। उदाहरण के लिए निम्न आव्यूह एक टोएपलित्ज़ आव्यूह है:


\begin{bmatrix}
a & b & c & d & e \\
f & a & b & c & d \\
g & f & a & b & c \\
h & g & f & a & b \\
i & h & g & f & a 
\end{bmatrix}.

कोई भी निम्न रूप का n×n आव्यूह A


A =
\begin{bmatrix}
  a_{0} & a_{-1} & a_{-2} & \ldots & \ldots  &a_{-n+1}  \\
  a_{1} & a_0  & a_{-1} &  \ddots   &  &  \vdots \\
  a_{2}    & a_{1} & \ddots  & \ddots & \ddots& \vdots \\ 
 \vdots &  \ddots & \ddots &   \ddots  & a_{-1} & a_{-2}\\
 \vdots &         & \ddots & a_{1} & a_{0}&  a_{-1} \\
a_{n-1} &  \ldots & \ldots & a_{2} & a_{1} & a_{0}
\end{bmatrix}

एक टोएपलित्ज़ आव्यूह है। यदि A के अवयव i,j वाँ अवयव Ai,j द्वारा निरूपित किया जाए तो

A_{i,j} = A_{i+1,j+1} = a_{i-j}.\

टोएपलित्ज़ निकाय का हल[संपादित करें]

निम्न रूप की आव्यूह समीकरण

Ax=b\

टोएपलित्ज़ समीकरण कहलाती है यदि A टोएपलित्ज़ आव्यूह है। यदि A एक n\times n टोएपलित्ज़ आव्यूह है तो निकाय की स्वतंत्रता की कोटि n2 के स्थान पर केवल 2n−1 होगी। अतः इस परिस्थिति में टोएपलित्ज़ निकाय का हल थोड़ा सरल दिखाई देता है और वास्तविकता भी ऐसी ही है।

सामान्य गुणधर्म[संपादित करें]

विविक्त संवलन[संपादित करें]

संवलन संक्रिया को आव्यूह गुणन के रूप में निर्मित किया जा सकता है, जहाँ किसी एक निवेश को टोएपलित्ज़ा आव्यूह में परिवर्तित किया जा सकता है। उदाहरण के लिए  h और  x का संवलन निम्न प्रकार प्रारूपित किया जाता है


        y = h \ast x =
            \begin{bmatrix}
                h_1 & 0 & \ldots & 0 & 0 \\
                h_2 & h_1 & \ldots & \vdots & \vdots \\
                h_3 & h_2 & \ldots & 0 & 0 \\
                \vdots & h_3 & \ldots & h_1 & 0 \\
                h_{m-1} & \vdots & \ldots & h_2 & h_1 \\
                h_m & h_{m-1} & \vdots & \vdots & h_2 \\
                0 & h_m & \ldots & h_{m-2} & \vdots \\
                0 & 0 & \ldots & h_{m-1} & h_{m-2} \\
                \vdots & \vdots & \vdots & h_m & h_{m-1} \\
                0 & 0 & 0 & \ldots & h_m
            \end{bmatrix}
            \begin{bmatrix}
                x_1 \\
                x_2 \\
                x_3 \\
                \vdots \\
                x_n
            \end{bmatrix}
 y^T =
            \begin{bmatrix}
                h_1 & h_2 & h_3 & \ldots & h_{m-1} & h_m
            \end{bmatrix}
            \begin{bmatrix}
                x_1 & x_2 & x_3 & \ldots & x_n & 0 & 0 & 0& \ldots & 0 \\
                0 & x_1 & x_2 & x_3 & \ldots & x_n & 0 & 0 & \ldots & 0 \\
                0 & 0 & x_1 & x_2 & x_3 & \ldots & x_n & 0  & \ldots & 0 \\
                \vdots & \vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots  & \ldots & 0 \\
                0 & \ldots & 0 & 0 & x_1 & \ldots & x_{n-2} & x_{n-1} & x_n & \vdots \\
                0 & \ldots & 0 & 0 & 0 & x_1 & \ldots & x_{n-2} & x_{n-1} & x_n
            \end{bmatrix}.

ये भी देखें[संपादित करें]

टिप्पणी[संपादित करें]