"ऍक्स किरण": अवतरणों में अंतर

मुक्त ज्ञानकोश विकिपीडिया से
छो 47.247.238.13 (Talk) के संपादनों को हटाकर 2405:205:2007:8528:8CC3:A8C0:7C14:15E6 के आखिरी अवतरण को पूर्ववत किया
टैग: वापस लिया
छो संजीव कुमार द्वारा सम्पादित संस्करण 3665677 पर पूर्ववत किया। (ट्विंकल)
टैग: किए हुए कार्य को पूर्ववत करना
पंक्ति 4: पंक्ति 4:
[[चित्र:First medical X-ray by Wilhelm Röntgen of his wife Anna Bertha Ludwig's hand - 18951222.gif|thumb|''Hand mit Ringen'': रोएन्टजन की पहली 'मेडिकल' एक्स-किरण का प्रिन्ट - उनकी पत्नी का हाथ का प्रिन्ट जो २२ दिसम्बर सन् १८९५ को लिया गया था]]
[[चित्र:First medical X-ray by Wilhelm Röntgen of his wife Anna Bertha Ludwig's hand - 18951222.gif|thumb|''Hand mit Ringen'': रोएन्टजन की पहली 'मेडिकल' एक्स-किरण का प्रिन्ट - उनकी पत्नी का हाथ का प्रिन्ट जो २२ दिसम्बर सन् १८९५ को लिया गया था]]
[[चित्र:Roentgen-Roehre.svg|thumb|जल से शीतलित एक्स-किरण नलिका (सरलीकृत/कालातीत हो चुकी है।)]]
[[चित्र:Roentgen-Roehre.svg|thumb|जल से शीतलित एक्स-किरण नलिका (सरलीकृत/कालातीत हो चुकी है।)]]
[[चित्र:Lung X-Ray.jpg|पाठ=मानव फेफड़े का एक्स-रे|अंगूठाकार|मानव फेफड़े का एक्स-रे]]
'''एक्स-किरण''' या '''एक्स रे''' (X-Ray) एक प्रकार का [[विद्युत चुम्बकीय विकिरण]] है जिसकी तरंगदैर्घ्य 10 से 0.01 [[नैनोमीटर]] होती है। यह चिकित्सा में [[निदान]] (diagnostics) के लिये सर्वाधिक प्रयोग की जाती है। यह एक प्रकार का [[आयनकारी विकिरण]] है, इसलिए खतरनाक भी है। कई भाषाओं में इसे रॉण्टजन विकिरण भी कहते हैं, जो कि इसके अन्वेषक विल्हेल्म कॉनरॅड [[रॉण्टजन]] के नाम पर आधारित है। [[रैम|रॉण्टजन ईक्वेलेंट मानव]] (Röntgen equivalent man / REM) इसकी शास्त्रीय मापक [[इकाई]] है।
'''एक्स-किरण''' या '''एक्स रे''' (X-Ray) एक प्रकार का [[विद्युत चुम्बकीय विकिरण]] है जिसकी तरंगदैर्घ्य 10 से 0.01 [[नैनोमीटर]] होती है। यह चिकित्सा में [[निदान]] (diagnostics) के लिये सर्वाधिक प्रयोग की जाती है। यह एक प्रकार का [[आयनकारी विकिरण]] है, इसलिए खतरनाक भी है। कई भाषाओं में इसे रॉण्टजन विकिरण भी कहते हैं, जो कि इसके अन्वेषक विल्हेल्म कॉनरॅड [[रॉण्टजन]] के नाम पर आधारित है। [[रैम|रॉण्टजन ईक्वेलेंट मानव]] (Röntgen equivalent man / REM) इसकी शास्त्रीय मापक [[इकाई]] है।


पंक्ति 53: पंक्ति 52:


== एक्सरे उत्पादन के उपकरण ==
== एक्सरे उत्पादन के उपकरण ==
{{मुख्य|एक्स किरण नलिका}r455445455}
{{मुख्य|एक्स किरण नलिका}}


== एक्सरे के गुण ==
== एक्सरे के गुण ==

04:26, 26 अप्रैल 2019 का अवतरण

Hand mit Ringen: रोएन्टजन की पहली 'मेडिकल' एक्स-किरण का प्रिन्ट - उनकी पत्नी का हाथ का प्रिन्ट जो २२ दिसम्बर सन् १८९५ को लिया गया था
जल से शीतलित एक्स-किरण नलिका (सरलीकृत/कालातीत हो चुकी है।)

एक्स-किरण या एक्स रे (X-Ray) एक प्रकार का विद्युत चुम्बकीय विकिरण है जिसकी तरंगदैर्घ्य 10 से 0.01 नैनोमीटर होती है। यह चिकित्सा में निदान (diagnostics) के लिये सर्वाधिक प्रयोग की जाती है। यह एक प्रकार का आयनकारी विकिरण है, इसलिए खतरनाक भी है। कई भाषाओं में इसे रॉण्टजन विकिरण भी कहते हैं, जो कि इसके अन्वेषक विल्हेल्म कॉनरॅड रॉण्टजन के नाम पर आधारित है। रॉण्टजन ईक्वेलेंट मानव (Röntgen equivalent man / REM) इसकी शास्त्रीय मापक इकाई है।

खोज

जर्मनी में वुर्ट्‌सबर्ग विश्वविद्यालय के भौतिकी के प्राध्यापक विल्हेल्म कोनराड रंटजन ने 1895 में एक्सरे का आविष्कार किया।

यदि कांच की नलिका में से वायु को पंप से क्रमश: निकाला जाए और उसमें उच्च विभव का विद्युद्विसर्जन किया जाए, तो दाब के पर्याप्त अल्प होने पर वायु स्वयं प्रकाशित होने लगती है। इस घटना का प्रायोगिक अध्ययन करते समय रंटजन ने यह देखा कि वायु का दाब अत्यंत अल्प होने पर काच की नलिका में से जो किरणें आती हैं, उनसे बेरियम प्लैटिनोसाइनाइड के मणिभ प्रकाश देने लगते हैं और, नलिका को काले कागज से पूर्ण रूप से ढकने पर भी, पास में रखे मणिभ द्युतिमान होते रहते हैं। अत: यह स्पष्ट था कि विसर्जननलिका के बाहर जो किरणें आती हैं वे काले कागज में से सुगमता से पार हो सकती हैं और बेरियम प्लेटिनोसाइनाइड के परदे को द्युतिमान करने का विशेष गुण इन किरणों में है। विज्ञान में इस प्रकार की किरणें तब तक ज्ञात नहीं थीं। अत: इन नई आविष्कृत किरणों का नाम 'एक्सरेज़' (अर्थात्‌ 'अज्ञात किरणें') रखा गया, किंतु रंटजन के सम्मान में, विशेषत : जर्मनी में, इन किरणों को 'रंटजन किरणें' ही कहा जाता है। रंटजन के आविष्कार के प्रकाशित होते ही संपूर्ण वैज्ञानिक विश्व का ध्यान एक्सरे की ओर आकृष्ट हुआ। अपारदर्शी ठोस पदार्थो में से पार होने का एक्सरे का गुणधर्म अत्यंत महत्वपूर्ण था और इस गुणधर्म का उपयोग विज्ञान के अनेक विभागों में हो सकता था। अत: अनेक भौतिकी प्रयोगशालाओं में एक्सरे के उत्पादन तथा उनके गुणधर्मो के अध्ययन के प्रयत्न होने लगे।

परिचय

अल्प दाब पर वायु में जो विद्युत विसर्जन होता है, उसके अध्ययन का आधुनिक भौतिकी के विकास में एक विशेष स्थान है। यदि कांच की एक लंबी नलिका को निर्वात पंप से जोड़कर भीतर की वायु में उच्च विभव की विद्युद्वारा प्रवाहित की जाए तो प्रारंभ में, जब दाब अधिक रहती है तब, कोई क्रिया दिखाई नहीं देती, किंतु वायु की दाब जब अल्प हो जाती है तब पहले दोनों विद्युदग्र द्युतिमान होते हैं। दाब को और कम करने पर संपूर्ण नलिका द्युतिमान हो जाती है।

आधुनिक भौतिकी की व्याख्या के अनुसार इसका कारण है कि जब इलेक्ट्रानों को ऊर्जा प्राप्त होती है और वे धनाग्र की ओर अति वेग से जाते समय शेष वायु के अणुओं से संघात करते हैं। संघातों के कारण अणुओं के आयन बनते हैं और जब ये आयन पूर्व अवस्था को प्राप्त होते हैं तब प्रकाश का उत्सर्जन होता है। आयनों के अस्तित्व के कारण वायु में विद्युद्विसर्जन जारी रहता है। दाब के अत्यंत अल्प हो जाने पर इलेक्ट्रानों से संघात होने के लिए पर्याप्त अणु नहीं रहते; अत: इलेक्ट्रान ऋणाग्र से निकलकर अपनी संपूर्ण ऊर्जा से धनाग्र से सीधे टकराते हैं। इन संघातों के कारण इलेक्ट्रानों की तीव्र ऊर्जा धनाग्र के परमाणुओं को मिल जाती है और इसका एक परिणाम एक्सरे का उत्पादन होता है। इस पद्धति से एक्सरे का उत्पादन करने के लिए नलिका में एक क्रांतिक दाब की आवश्यकता होती है। वायु की दाब यदि इस क्रांतिक दाब से अधिक हो तो एक्सरे के उत्पादन के लिए पर्याप्त ऊर्जा इलेक्ट्रानों में नहीं रहती (क्योंकि इलेक्ट्रानों की ऊर्जा का अधिकांश परमाणुओं से लगातार संघात होने के कारण क्रमश: घटता जाता है और धनाग्र से संघात होते समय केवल स्वल्प ऊर्जा शेष रहती है)। दूसरी ओर, यदि दाब इस क्रांतिक दाब से कम हो तो इलेक्ट्रान उत्पन्न ही नहीं होते, अत: विद्युद्विसर्जन ही बंद हो जाता है। प्रारंभ में एक्सरे का उत्पादन इसी प्रकार की वायुनली का उपयोग करके किया जाता था और वायु की दाब को महत्प्रयास से इस क्रांतिक दाब के मान पर रखा जाता था।

गुणधर्म

एक्सरे के दो विशेष गुणधर्म अधिक महत्वपूर्ण हैं :

  • (1) तीव्रता (intensity) और
  • (2) ठोस पदार्थो में प्रवेशक्षमता (जिसे एक्सरे की 'कठोरता' भी कहा जाता है)।

तीव्रता

तीव्रतामापन की तीन मुख्य विधियाँ हैं। प्रतिदीप्त परदे पर एक्सरे से जो दीप्ति आती है उसकी तीव्रता-मर्यादित दीप्ति तक-एक्सरे की तीव्रता की समानुपाती होती है। प्रतिदीप्ति की तीव्रता का अनुमान करके एक्सरे की तीव्रता की तुलना स्थूल रूप से हो सकती है। दूसरी विधि में फोटो पट्टिका के ऊपर एक्सरे की (प्रकाश के ही समान) जो क्रिया होती है, उसका उपयोग किया जाता है। एक्सरे के आपतन से फोटो पट्टिका पर जो कालापन आता है, वह एक्सरे की तीव्रता तथा आपतन काल पर निर्भर रहता है। इस पद्धति से दो एक्सरे पुंजों की तीव्रताओं की तुलना करने के लिए अधिक तीव्रता के एक्सरे पुंज से फोटो पट्टिका पर मर्यादित स्थान पर किसी उपयुक्त काल तक क्रिया होने दी जाती है और तत्पश्चात्‌ उसी पट्टिका पर कुछ नीचे दूसरे एक्सरे पुंज की क्रिया काल t, 2t, 3t आदि तक होने दी जाती है। पट्टिका को विकसित (डेवेलप) करने के पश्चात्‌ दोनों चित्रों के कालेपन की तुलना करने से दोनों पुंजों की सापेक्ष तीव्रता का ज्ञान हो जाता है। तीव्रतामापन की तीसरी रीति अधिक प्रचलित है, क्योंकि इस रीति से तीव्रता ठीक ठीक मापी जा सकती है। जब एक्सरे वायु में से जाती है तब वायु विद्युच्चालक हो जाती है और उसकी चालकता एक्सरे की तीव्रता पर निर्भर रहती है। एक्सरे की क्रिया से वायु के अणुओं के इलेक्ट्रान विस्थापित होते हैं और आयन उत्पन्न होते हैं। उचित विद्युद्विभव की उपस्थिति में आयनों से जो विद्युद्धारा प्राप्त होती है, वह संवेदी विद्युन्मापी से, अथवा अन्य उचित संवेदी उपकरणों से, मापी जा सकती है। एक्सरे की तीव्रता विद्युद्धारा की समानुपाती होती है। हाल में गुणक-प्रकाशनलिका (मल्टिप्लायर फोटो टयूब) और एक्सरे-संवेदी स्फुर के उपयोग से तीव्रता का मापन अत्यंत सुलभ हो गया है। उसी प्रकार, गाइगरगुणक की सहायता से आयनीकरण की धारा का मापन भी सुगमता से हो सकता है। अत: वर्तमानकाल में इन दोनों प्रकार के उपकरणों द्वारा एक्सरे की तीव्रता का मापन अधिक प्रचलित है।

तीव्रतामापन की इन तीनों प्रचलित रीतियों से दो एक्सरे पुंजों की तीव्रताओं की केवल तुलना ही हो सकती है, निरपेक्ष तीव्रता प्राप्त नहीं हो सकती। आपाती एक्सरे के लंबवत्‌ एक वर्ग सेंटीमीटर क्षेत्रफल पर प्रति सेंकड जो ऊर्जा पड़ती है, उसको वस्तुत: हम उस एक्सरे की तीव्रता (निरपेक्ष तीव्रता) कह सकते हैं। इस तीव्रता को अर्ग प्रति वर्ग सेंटीमीटर प्रति सेंकड में व्यक्त करते हैं। तीव्रता का मापन ऊर्जा के रूप में करने के लिए एक्सरे की ऊर्जा को उष्मा अत्यंत अल्प होने के कारण इस रीति से तीव्रतामापन के लिए अत्यंत सूक्ष्मग्राही विशिष्ट उपकरणों की आवश्यकता होती है। इस रीति से तीव्रतामापन का प्रथम प्रयास टेरिल ने किया था। इसके पश्चात्‌ 1953 ई. में अमरीका में इलिनाय विश्वविद्यालय के हेंडरसन, बीटी एवं लाफ़न ने भी प्रयत्न किए। अति प्रचंड विद्युद्विभव से उत्पन्न एक्सरे की तीव्रता केवल इसी रीति से नापी जा सकती है।

भौतिकी के प्रायोगिक कार्यो में सदा एककों (units) की आवश्यकता होती है और मापी गई राशि के अनुसार इसका स्वरूप होता है। एक्सरे की मात्रा के एकक को 'रंटजन' कहते हैं और वर्तमान काल में एक रंटजन की परिभाषा निम्नलिखित प्रकार से की जाती है-

एक रंटजन एक्सरे की वह मात्रा है जिससे 0.001293 ग्राम वायु से प्राप्त आवेशित कणिकाओं का उत्सर्जन 1 स्थिर वैद्युत (धन अथवा ऋण) होगा। इस परिभाषा के अनुसार एक्सरे की तीव्रता रंटजन एककों में मापने के लिए रंटजनमापी उपकरण उपयोग में लाए जाते हैं।

कठोरता

एक्सरे का दूसरा विशेष गुणधर्म उनकी ठोस पदार्थो में प्रवेशक्षमता है। भिन्न भिन्न ठोस पिंडों की समान मोटाइयों में से पार होने पर एक्सरे की तीव्रता में जो कमी होती है वह समान नहीं होती। कुछ ठोस पदार्थो में एक्सरे का अवशोषण अधिक होता है ओर कुछ पदार्थो में कम। प्रयोग द्वारा यह फल प्राप्त हुआ कि किसी ठोस विशेष की भिन्न भिन्न मोटाइयों में से यदि एक्सरे पार जाए, तो निर्गत एक्सरे को तीव्रता, प्रारंभिक तीव्रता और ठोस पदार्थ की मोटाई, इन तीनों में निम्नलिखित समीकरण के अनुसार संबंध रहता है :

log (i / i.) = – m × मोटाई --- (1)

यहाँ (i.) = एक्सरे की प्रारंभिक तीव्रता;

i = ठोस पदार्थ में से पार होने के पश्चात्‌ एक्सरे की तीव्रता;

m = एक स्थिरांक, जिसको 'अवशोषण गुणक' कहते हैं। इस स्थिरांक को उस ठोस विशेष एक्सरे-अवशोषण-गुणक कहते हैं। वस्तुत: यह रेखीय गुणक है। इसको व्यापक रूप में व्यक्त करने के लिए (m) में उस ठोस पदार्थ के घनत्व का भाग दिया जाता है और इस प्रकार प्राप्त अवशोषण गुणंक को 'संहति-अवशोषण-गुणंक' कहते हैं। अत:

mmass = m / घनत्व

संहति-अवशोषण-गुणक का विशेष महत्व यह है कि वह अवशोषक पदार्थ का लाक्षणिक गुणधर्म (charecteristic property) है। उदाहरणार्थ, जल और भाप का रेखीय अवशोषण-गुणक भिन्न होता है, क्योंकि जल द्रव है और भाप गैस हैं। परंतु जल तथा भाप का एक्सरे संहति-अवशोषण-गुणंक समान ही होता है, क्योंकि जल तथा भाप के रासायनिक संरचक अभिन्न हैं अर्थात्‌ हाइड्रोजन तथा आक्सिजन। प्रकाश और एक्सरे के गुणधर्मो की भिन्नता संहति-अवशोषण-गुणक से अत्यंत स्पष्ट हो जाती है। साधारणत: द्रव और ठोस पदार्थ प्रकाश के लिए स्वयं अपारदर्शी अथवा पारभासक (ट्रैसल्यूसेंट) होते हैं। प्रकाश के लिए हीरा पारदर्शी और ग्रैफ़ाइट अपारदर्शी है, परंतु एक्सरे का संहति-अवशोषण-गुणंक हीरा तथा ग्रैफ़ाइट के लिए समान ही रहता है, क्योंकि ये दोनों पदार्थ वस्तुत: कार्बन के ही विभिन्न स्वरूप हैं।

एक्सरे नलिका से जो संपूर्ण एक्सरे प्राप्त होते हैं, उन सबका अवशोषण-गुणक मुख्यत: (1) विद्युद्विभव और (2) अवशोषक परदे की धातु का परमाणु-क्रमांक, इन दोनों पर निर्भर रहता है। जैसे जैसे विभव बढ़ता जाता है वैसे ही वैसे उत्पादित एक्सरे की प्रवेशक्षमता अथवा कठोरता बढ़ती जाती है। समीकरण (1) से यह निष्कर्ष निकलता है कि किसी एक ठोस पदार्थ के लिए अवशोषण गुणक सब मोटाइयों के लिए स्थिर रहेगा। किंतु प्रत्यक्ष प्रयोग में एक्सरे नलिका से प्राप्त विकिरण का न्यून प्रवेशक्षमतावाला भाग अवशोषक परदे के प्रथम स्तरों में ही पूर्णतया अवशोषित हो जाता है (कम प्रवेशक्षमता के इस एक्सरे को मृदू एक्सरे कहते हैं)। केवल अधिक प्रवेशक्षमता के एक्सरे (जिनको कठोर एक्सरे कहते हैं) अवशोषण परदे के अंतिम स्तरों तक पहुँच पाते हैं। स्पष्ट है कि अवशोषण परदे में प्रवेश करनेवाले एक्सरे का अवशोषण गुणंक परदे से पार निकले हुए एक्सरे के अवशोषण गुणक से अधिक होता है। जब समस्त एक्सरे का अवशोषण गुणक समान होता है (अथवा भौतिकी की भाषा में, जब समस्त एक्सरे का तरंगदैर्घ्य समान होता है) तब उनको समांग एक्सरे कहते हैं। अत: एक्सरे की मात्रा उनकी तीव्रता से और उनकी विशेषता उनके अवशोषण-गुणक से (अथवा, कहना चाहिए, उनके तरंगदैर्घ्य से) मापित होता है।

हानिकारक प्रभाव तथा चिकित्सीय उपयोग

जिस पदार्थ से प्रकाश आता है (चाहे वह पदार्थ स्वयं प्रकाशित हो अथवा किसी द्युतिमान पदार्थ से प्राप्त प्रकाश का प्रकीर्णन करता हो) उस पदार्थ को हम देख सकते हैं, क्योंकि प्रकाश किरणों की एक क्रिया हमारी आँख के रूपाधार (रेटिना) पर होती है। इस प्रकार की क्रिया एक्सरे द्वारा नहीं होती, अत: एक्सरे दृश्य नहीं हैं। इतना ही नहीं, आँखों पर तथा शरीर के अन्य अंगों पर एकसरे की क्रिया अत्यंत हानिकारक होती है। जीवित कोशाओं पर एक्सरे की पर्याप्त काल तक क्रिया होने से वे मृत्त हो जाती हैं। एक्सरे शरीर के चर्म में से सरलता से पार हो जाते हैं और भीतर के जीवित कोशाओं पर इनकी पर्याप्त काल तक क्रिया होने से उनके मृत हो जाने की संभावना रहती है। फिर, एक्सरे के प्रभाव टिकाऊ होते है; अत: शरीर के एक ही स्थान पर भिन्न-भिन्न समयों पर भी एक्सरे की क्रिया होती रहने पर कुछ काल में कैन्सर सदृश दु:साध्य रोग हो जाते हैं। अत: एक्सरे का उपयोग करते समय अत्यंत सावधानी से कार्य करने की आवश्यकता रहती है। शरीर की रक्षा के लिए विशेष साधन उपयोग में लाए जाते हैं। इसके अतिरिक्त एक्सरे का नित्य उपयोग करनेवाले वर्तमान काल में एक एक्सरे-मात्रा-मापी अपनी जेब में रखते हैं, जिससे पता चलता है कि विकिरण की कितनी मात्रा कर्मचारी के ऊपर कार्य कर चुकी है। एक्सरे के इस घातक गुणधर्म का अन्य रोगों में उपयोग भी किया जाता है; जैसे, शरीर के किसी भाग में अनिष्ट रोगणुओं की वृद्धि होती हो तो उनपर एक्सरे का प्रयोग करके उन्हें नष्ट किया जा सकता है।

एक्सरे का आयुर्विज्ञान (मेडिसिन) में, विशेषत: शल्यकर्म (सर्जरी) में, अधिक उपयोग होता है। इस प्रकार के उपयोग की संभावना एक्सरे के आविष्कार के समय से ही स्पष्ट थी। शरीर के भिन्न-भिन्न अवयवों के अवशोषण-गुणक विभिन्न होते हैं; अत: शरीर के किसी भी भाग में से एक्सरे पार करके फोटो लेने से अस्थियाँ तथा अन्य घटक पृथक्‌ पृथक्‌ दिखाई देते हैं (एक्सरे विज्ञान द्र.)। अत: शल्य क्रिया के पूर्व, अथवा यह ज्ञात करने के लिए कि रोग किस अवस्था में है एक्सरे फोटो अत्यंत उपयोगी होते हैं। एक्सरे के उत्पादन में प्रगति होने पर उनका उपयोग उद्योगों में भी होने लगा और वर्तमान काल में धातुविज्ञान में एक्सरे का उपयोग आवश्यक हो गया है।

एक्सरे उत्पादन के उपकरण

एक्सरे के गुण

ऊर्जा या तो कणों के साथ अथवा तरंगों के साथ संयुक्त रहती है। किसी उद्गम से ऊर्जा का विसर्जन होता हो तो इस ऊर्जा का अस्तित्व साधारणत: विद्युच्चंबुकीय तरंगों की (ध्वनि के लिए वायु के तरंगों की) तीव्रता में, अथवा इलेक्ट्रान, प्रोटान, न्यूट्रान, आयन इत्यादि कणों की गतिज ऊर्जा के रूप में, व्यक्त होता है। तरंग और कण के स्वरूप भिन्न होते हैं; इसलिए इनको साधारणत: भिन्न वर्गो में रखा जाता है। किंतु अनेक प्रयोगों के फलों से यह स्पष्ट हो गया है कि इन वर्गों का बंधन तरंगों में कणों के गुण हैं और, विलोमत: कणों में भी तरंगों के गुण हैं। इस द्वैत रूप का प्रारंभ प्लांक के उष्माविकिरण के सिद्धांत से प्रारंभ हुआ। एक्सरे के गुण भी इस द्वैत रूप के अपवाद नहीं हैं। एक्सरे के कतिपय गुण तरंगों के हैं तथा कतिपय गुण कणों के भी हैं। पहले हम तरंगीय गुणों पर विचार करेंगे।

प्रारंभिक प्रयोगों के फलों से यह स्पष्ट था कि एक्सरे और प्रकाश के गुणों में साम्य है। एक्सरे तथा प्रकाश की किरणों का दिक्‌ (स्पेस) में सरल रेखाओं में प्रचारण होता है। प्रकाश के समान एक्सरे की तीव्रता भी दूरी के वर्ग की प्रतिलोमानुपाती होती है। फोटो पट्टिका पर होनेवाली क्रिया तथा गैस में किए गए आयनीकरण के गुणों में भी दोनों में साम्य है। 1905 ई. में माक्स ने प्रयोग द्वारा यह प्रमाणित किया कि एक्सरे का वेग प्रकाश का वेग के समान–अर्थात 3×10° सें.मी.प्रति सेंकड–है। वैद्युत तथा चुंबकीय क्षेत्रों में एक्सरे (प्रकाश के समान) अप्रभावित रहते हैं। इन सब गुणों से यह स्पष्ट था कि एक्सरे आवेशित कण नहीं, प्रकाश के समान विद्युच्चुंबकीय प्रकृति के हैं। भेद केवल तरंगदैर्घ्यो में हो सकता है। हागा, विंड्ट, वाल्टेर, पोल, सोमरफ़ेल्ड इत्यादि वैज्ञानिकों के प्रयोगों से यह अनुमान किया जा सकता था कि एक्सरे का तरंगदैर्घ्य 1×10-8 से.मी. के निकट है। किंतु प्रथम निर्णयात्मक फल लावे, फ्रीडरिश तथा क्निपिंग के प्रयोगों से प्राप्त हुआ और एक्सरे की तरंगदैर्घ्य प्रमाणित हुई। इस प्रयोग के पश्चात्‌ एक्सरे की तरंगप्रकृति सुस्पष्ट करने के तथा उसके संबंध में अन्य परिणामों के प्रायोगिक फल प्राप्त करने के तथा उसके संबंध में अन्य परिमाणों के प्रायोगिक फल प्राप्त करने के अनेक प्रयत्न हुए। एक्सरे का तरंगदैर्घ्य प्रकाश के तरंगदैर्घ्य से बहुत कम (प्राय: एक सहस्रांश्) होने के कारण जिन प्रयोगों द्वारा प्रकाश का तरंगदैर्घ्य सरलता से मापा जा सकता है, वैसे प्रयोग एक्सरे के लिए करने में अनेक कठिनाइयाँ उपस्थित होती हैं। किंतु वर्तमान काल में प्रकाशको के प्रयोगों के समान एक्सरे का व्यतिकरण (इंटरफ़ियरेंस), विवर्तन (डफ्ऱैिक्शन), ध्रुवण (पोलैराइज़ेशन) इत्यादि गुण सुस्पष्ट करने के प्रयोग सफल हुए हैं और एक्सरे के तरंगदैर्घ्य उतनी ही यर्थाथता से ज्ञात हुए हैं जितनी से प्रकाशीय तरंगों के ज्ञात हुए थे। जिन प्रयोगों से एक्सरे की तरंगप्रकृति प्रमाणित होती है उनमें से कुछ नीचे दिए जा रहे हैं-

एक्सरे का व्यतिकरण

एक्सरे का अपवर्तन

एक्सरे का विवर्तन

एक्सरे का वर्णक्रम और परमाणुओं की संरचना

एक्सरे उत्पादन के उपकरण

एक्सरे और मणिभ

एक्सरे से मणिभ संरचना जानने में विशेष सहायता मिलती है (देखें, एक्सरे और मणिभ संरचना)।

एक्सरे के अन्य उपयोग

चिकित्सीय उपयोगों के अलावा भी एक्सरे का अनेकों प्रकार से उपयोग किया जाता है। एक्सरे के विशिष्ट गुणों के कारण उनका उपयोग विस्तृत रूप से विज्ञान की अनेक शाखाओं तथा विभिन्न उद्योगों में होता आ रहा है। उद्योगों में, विशेषत: निर्माण तथा निर्मित पदार्थो के गुणों के नियंत्रण में, एक्सरे का बहुत उपयोग होता है। निर्मित पदार्थो की अंतस्य त्रुटियाँ एक्सरे फोटोग्राफों द्वारा सरलता से ज्ञात की जा सकती हैं। विमान तथा उसी प्रकार के साधनों के यंत्रों में अति तीव्र वेग तथा चरम भौतिक परिस्थितियों का सामना करना पड़ता हैं; ऐसे यंत्रों के निर्माण में प्रत्येक अवयव अंतर्बाह्य निर्दोष तथा यथार्थ होना चाहिए। ऐसे प्रत्येक अवयव की परीक्षा एक्सरे से की जाती है और सदोष अवयवों का त्याग किया जाता है। धातु एक्सरे का अवशोषण करते हैं, अत: धातुओं के अंतर्भागों की परीक्षा के लिए मृदु एक्सरे अनुपयुक्त होते हैं। विशाल आकार के धात्वीय पदार्थो के लिए अत्युच्च विभव के एक्सरे की आवश्यकता होती है।

धातु विज्ञान तथा धातुगवेषणा में एक्सरे अत्यंत उपयोगी हैं। धातु भी मणिभीय होते हैं, किंतु इनके मणिभ सूक्ष्म होते हैं और वे यथेच्छ प्रकार से स्थापित रहते हैं, अत: धातुओं की लावे-प्रतिमा में सामान्यत: संकेंद्र वर्तुल रहते हैं। प्रत्येक वर्तुल एक समान तीव्रता का होता है, किंतु किसी भौतिक क्रिया से कणों के आकारों में वृद्धि हो जाने पर इन वर्तुलों में बिंदु भी आते हैं। अत: एक्सरे व्याभंग द्वारा इसका ठीक ठीक पता चल जाता है कि धात्वीय मणिभों के कण किस प्रकार के हैं और उनका आकार आदि कैसा है। इस ज्ञान का धातुविज्ञान में अत्यंत महत्व है। धातु के पदार्थ बनाने के समय उष्मा के कारण उनमें अंतर्विकृति आ जाती है। धातु को मोड़ने से भी उसमें अंतर्विकृति हो जाती है। ऐसी विकृतियों का विश्लेषण एक्सरे से हो सकता है। इस प्रकार विशिष्ट गुणों से युक्त निर्दोष धातु प्राप्त करने में एक्सरे का विशेष उपयोग होता है।

एक्सरे के अन्य उपयोगों में एक्सरे सूक्ष्मदर्शी उल्लेखनीय है। एक्सरे के तरंगदैर्घ्य प्रकाश के तरंगदैर्घ्यो से सूक्ष्म होते हैं, अत: एक्सरे सूक्ष्मदर्शी को प्रकाश सूक्ष्मदर्शी से अधिक प्रभावशाली होना चाहिए। 1948 में एक्सरे को केंद्रित करने के कर्कपैट्रिक के प्रयत्न अंशत: सफल हुए। इस रीति से तथा अन्य रीतियों से प्रतिबिंब का आवर्धन करने के प्रयत्न अब प्रायोगिक अवस्था पार कर चुके हैं और अनेक निर्माताओं द्वारा निर्मित कई प्रकार के एक्सरे सूक्ष्मदर्शी सुलभ हैं।

प्रकाश सूक्ष्मदर्शी से जिन बातों का पता नहीं चल पाता उनका ज्ञान सरलतापूर्वक एक्सरे सूक्ष्मदर्शी से हो जाता है।

संदर्भ ग्रंथ

  • ए. एच. कॉम्पटन तथा एलीसन : एक्सरे इन्‌ थ्योरी ऐंड एक्स्पेरिमेंट (डी. ह्वान नोस्ट्रांग कंपनी, न्यूयॉर्क, 1935); * स्प्राऊल : एक्सरेज़ इन प्रैक्टिस (मैक्‌-ग्रॉ हिल कंपनी, न्यूयार्क, 1946);
  • जॉर्ज एल. क्लार्क : ऐप्लाएड एक्सरेज़ (मैक-ग्रॉ हिल कंपनी, न्यूयार्क, 1955);
  • ए. लिखती तथा डब्ल्यू. मिंडर : रंटजन फिज़ीक (स्प्रिंगर-फरलाग, विएना, 1955);
  • रंटजन स्ट्राहलेन; (हैंडबुक डेर फिज़ीक, 30 भाग, स्प्रिंगर फरलाग, बर्लिन, 1957)

संदर्भ ग्रंथ

  • ए. एच. कॉम्पटन तथा एलीसन : एक्सरे इन्‌ थ्योरी ऐंड एक्स्पेरिमेंट (डी. ह्वान नोस्ट्रांग कंपनी, न्यूयॉर्क, 1935); * स्प्राऊल : एक्सरेज़ इन प्रैक्टिस (मैक्‌-ग्रॉ हिल कंपनी, न्यूयार्क, 1946);
  • जॉर्ज एल. क्लार्क : ऐप्लाएड एक्सरेज़ (मैक-ग्रॉ हिल कंपनी, न्यूयार्क, 1955);
  • ए. लिखती तथा डब्ल्यू. मिंडर : रंटजन फिज़ीक (स्प्रिंगर-फरलाग, विएना, 1955);
  • रंटजन स्ट्राहलेन; (हैंडबुक डेर फिज़ीक, 30 भाग, स्प्रिंगर फरलाग, बर्लिन, 1957)

इन्हें भी देखें