"समूह (गणितशास्त्र)": अवतरणों में अंतर

मुक्त ज्ञानकोश विकिपीडिया से
No edit summary
No edit summary
पंक्ति 5: पंक्ति 5:
समूह [[समरूपता|समरूपता]] की धारणा के साथ एक गहरी रिश्तेदारी साझा करते हैं। उदाहरण के लिए, एक [[समरूपता समूह]] एक ज्यामितीय ऑब्जेक्ट की समरूपता विशेषताओं को सांकेतिक शब्दों में बदलता है: यहां समूह उन परिवर्तनों का समूह हैं जो वस्तु को अपरिवर्तित छोड़ देते हैं और यहां इस तरह के दो परिवर्तनों को एक के बाद एक प्रदर्शन करना द्विचर संक्रिया हैं।
समूह [[समरूपता|समरूपता]] की धारणा के साथ एक गहरी रिश्तेदारी साझा करते हैं। उदाहरण के लिए, एक [[समरूपता समूह]] एक ज्यामितीय ऑब्जेक्ट की समरूपता विशेषताओं को सांकेतिक शब्दों में बदलता है: यहां समूह उन परिवर्तनों का समूह हैं जो वस्तु को अपरिवर्तित छोड़ देते हैं और यहां इस तरह के दो परिवर्तनों को एक के बाद एक प्रदर्शन करना द्विचर संक्रिया हैं।


समूह की अवधारणा 18वीं शताब्दी में [[एवारिस्ट गेलोआ]] (Évariste Galois) के [[बहुपद समीकरण|बहुपद समीकरणों]] के अध्ययन से उठी। [[संख्या सिद्धांत|संख्या सिद्धान्त]] और ज्यामिति जैसे अन्य क्षेत्रों से योगदान के बाद, समूह धारणा को सामान्यीकृत और दृढ़तापूर्वक 1870 के आसपास स्थापित किया गया था। आधुनिक समूह सिद्धांत- एक सक्रिय गणितीय अनुशासन - समूहों के स्वतंत्र रूप से अध्ययन पर समर्पित है ।
समूह की अवधारणा 18वीं शताब्दी में [[एवारिस्ट गेलोआ]] (Évariste Galois) के [[बहुपद समीकरण|बहुपद समीकरणों]] के अध्ययन से उठी। [[संख्या सिद्धांत|संख्या सिद्धान्त]] और [[ज्यामिति|ज्यामिति]] जैसे अन्य क्षेत्रों से योगदान के बाद, समूह धारणा को सामान्यीकृत और दृढ़तापूर्वक 1870 के आसपास स्थापित किया गया था। आधुनिक समूह सिद्धांत- एक सक्रिय गणितीय अनुशासन - समूहों के स्वतंत्र रूप से अध्ययन पर समर्पित है ।


{{समूह सिद्धांत}}
{{समूह सिद्धांत}}

13:47, 29 अगस्त 2017 का अवतरण

रुबिक घन समूह से रुबिक घन प्रहस्तन।

गणित में समूह कुछ अवयवों वाले उस समुच्चय को कहते हैं जिसमें कोई द्विचर संक्रिया इस तरह से परिभाषित हो जो इसके किन्हीं दो अवयवों के संयुग्म से हमें तीसरा अवयव दे और वह तीसरा अवयव चार प्रतिबंधों को संतुष्ट करे। इन प्रतिबंधों को अभिगृहीत कहा जाता है जो निम्न हैं: संवरक, साहचर्यता, तत्समकता और व्युत्क्रमणीयता। समूह का सबसे प्रचलित उदाहरण जोड़ द्विचर संक्रिया के साथ पूर्णांकों का समुच्चय है; किन्हीं दो पूर्णांकों को जोड़ने पर भी एक पूर्णांक प्राप्त होता है। समूह अभिगृहीतों का अमूर्त सूत्रिकरण, किसी विशिष्ट समूह अथवा इसकी संक्रिया के मूर्त प्राकृतिक रूप का पृथकरण है। इस प्रकार अमूर्त बीजगणित और इससे परे यह व्यापक गणितीय महत्त्व रखता है। गणित के भीतर और बाहर कई क्षेत्रों में समूहों की सर्वव्यापीता ने उन्हें समकालीन गणित का एक केंद्रीय आयोजन सिद्धांत बना दिया।

समूह समरूपता की धारणा के साथ एक गहरी रिश्तेदारी साझा करते हैं। उदाहरण के लिए, एक समरूपता समूह एक ज्यामितीय ऑब्जेक्ट की समरूपता विशेषताओं को सांकेतिक शब्दों में बदलता है: यहां समूह उन परिवर्तनों का समूह हैं जो वस्तु को अपरिवर्तित छोड़ देते हैं और यहां इस तरह के दो परिवर्तनों को एक के बाद एक प्रदर्शन करना द्विचर संक्रिया हैं।

समूह की अवधारणा 18वीं शताब्दी में एवारिस्ट गेलोआ (Évariste Galois) के बहुपद समीकरणों के अध्ययन से उठी। संख्या सिद्धान्त और ज्यामिति जैसे अन्य क्षेत्रों से योगदान के बाद, समूह धारणा को सामान्यीकृत और दृढ़तापूर्वक 1870 के आसपास स्थापित किया गया था। आधुनिक समूह सिद्धांत- एक सक्रिय गणितीय अनुशासन - समूहों के स्वतंत्र रूप से अध्ययन पर समर्पित है ।

परिभाषा और चित्रण

प्रथम उदाहरण : पूर्णांक

एक चिर-परिचित समूह, पूर्णांकों Z का समुच्चय जिसमें संख्याएं

..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...,[1] जहाँ द्विचर संक्रिया जोड़ (+) है।


निम्नलिखित गुण नीचे दिए गए परिभाषा में दिए गए समूह के अभिगृहीतों के लिए एक पूर्णांक के रूप में कार्य करते हैं।

  • किसी भी दो पूर्णांकों a और b के लिए, राशि a + b भी एक पूर्णांक है। यानी की, पूर्णांकों का जोड़ हमेशा एक पूर्णांक पैदा करता है। यह गुण संवरक के रूप में जाना जाता है।
  • सभी पूर्णांकों a, b और c के लिए, (a + b) + c = a + (b + c)। शब्दों में अभिव्यक्त करते हुए, पहले a और b को जोड़कर, और उसके परिणाम को c से जोड़कर जो अंतिम परिणाम आता है वही परिणाम a को b और c के जोड़ से जोड़ने पर आता है। इस विशेषता को साहचर्यता कहा जाता है।
  • यदि a एक पूर्णांक है, तो 0 + a = a + 0 = a। शून्य को जोड़ का इकाई अवयव कहा जाता है, क्योंकि किसी भी पूर्णांक को शुन्य से जोड़ा जाये तो वही पूर्णांक प्राप्त होता है।
  • प्रत्येक पूर्णांक a के लिए, एक पूर्णांक b है, जिससे कि a + b = b + a = 0। पूर्णांक b को पूर्णांक a का व्युत्क्रम अवयव कहा जाता है और इसको -a से दर्शाया जाता है ।

पूर्णांक, ऑपरेशन + के साथ, समान संरचनात्मक पहलुओं को साझा करने वाले एक व्यापक वर्ग से संबंधित वस्तु बनाते है। सामूहिक रूप से इन संरचनाओं को उचित रूप से समझने के लिए, निम्नलिखित सार परिभाषा विकसित की गई है।

परिभाषा

एक समूह में एक समुच्चय G और साथ में एक द्विचर संक्रिया • , जो कि किसी भी दो अवयवों a और b को जोड़कर जोड़कर ab (या फिर ab) से दर्शाये जाने वाला एक अवयव बनाता है, होता है। एक समूह कहलाए जाने के लिए , दीये गए समुच्य G एवं संक्रिया • को निम्नलिखत आवश्यकताओं की पूर्ती करनी होगी। इन आवश्यकताओं को समूह के अभिगृहीत कहा जाता है।

संवरक
G में होने वाले किसी भी अवयव a और b के लिए ab भी G का एक अवयव है। a[›]
साहचर्य
G में होने वाले किसी भी अवयव a, b और c के लिए a • ( bc ) = ( ab ) • c
इकाई अवयव
∃ e ∈ G, s.t ∀ a ∈ G => a•e = a = e•a .
व्युत्क्रम अवयव
प्रत्येक a ∈ G के लिए b ∈ G s.t। a•b = b•a = e.

तो इसे एक समूह कहा जाता है तथा इसे (G, •) से निरुपित किया जाता है।

एक समूह का क्रमविनिमय होना आवश्यक नहीं है। अथवा यदि a, b ∈ G तो हो सकता है a•b ≠ b•a

उदाहरण

इतिहास

अमूर्त समूह की आधुनिक अवधारणा गणित के कई क्षेत्रों से विकसित हुई।[2][3][4] इसकी शुरुात बहुपद समीकरण के हल से हुई।

सन्दर्भ

  1. लैंग, हार्वार्ड (2005). "स्नातक बीजगणित" (अंग्रेजी में). en:Springer-Verlag. आई॰ऍस॰बी॰ऍन॰ 978-0-387-22025-3.सीएस1 रखरखाव: नामालूम भाषा (link)
  2. साँचा:Harvard citations/core
  3. साँचा:Harvard citations/core
  4. साँचा:Harvard citations/core