समरूपता

मुक्त ज्ञानकोश विकिपीडिया से
Jump to navigation Jump to search
इस चित्र में समान रंग में रंगे गये ज्यामितीय आकृयाँ परस्पर समरूप हैं।

यदि दो ज्यामितीय वस्तुओं का आकार (स्वरूप) समान हो तो उन्हें समरूप (similar) कहा जाता है। दूसरे शब्दों में, यदि दूसरी आकृति की सभी लम्बाइयों को समान अनुपात में घटाकर या बढ़ाकर पहली आकृति प्राप्त की जा सकती है तो ये दोनो आकृतियाँ परस्पर समरूप हैं। किन्ही दो समरूप बहुभुजों की संगत भुजाएं समानुपाती होतीं हैं और संगत कोणों के मान समान होते हैं।

सभी वृत्त समरूप होते हैं। दो दीर्घवृत्तों के दीर्घ अक्षों का अनुपात उनके लघु-अक्षों के अनुपात के बराबर हो तो वे भी समरूप होंगे।

समरूप त्रिभुज[संपादित करें]

समरूप त्रिभुज । इनके संगत कोण एक ही रंग में दिखाए गये हैं।

गुण[संपादित करें]

  • दो समरूप त्रिभुजों के संगत कोण समान होते हैं।
  • दो समरूप त्रिभुजों के क्षेत्रफल का अनुपात उनके संगत भुजाओं के अनुपात के वर्ग के बराबर होता है।
  • दो समरूप त्रिभुजों की संगत ऊँचाइयों का अनुपात उनकी संगत भुजाओं के अनुपात के बराबर होता है।

त्रिभुजों की समरूपता का दैनिक जीवन में उपयोग[संपादित करें]

त्रिकोणमिति के उपयोग भी देखें

TomoyukiMogi(ratio20160411)a.gif
SimilitudeHomothétieL.svg

दो समरूप त्रिभुजों के गुणों का उपयोग करते हुए बहुत सी लम्बाइयों (दूरियों) और ऊंचाइयों की गणना बड़ी आसानी से की जा सकती है।[1][2] विशेष बात यह है कि इस विधि से केवल कुछ आसानी से नापी जा सकने वाली दूरियाँ ही मापी जातीं हैं (कोण नहीं मापने पड़ते)। उदाहरण के लिए मान लीजिए कि आपको दिन में एक ध्वज-स्तम्भ की ऊँचाई निकालनी है। आप उसे सीधे माप नहीं सकते। आप समतल भूमि पर सूर्य के द्वारा बनी उसकी छाया की लम्बाई माप लीजिए। फिर १ मीटर लम्बी एक छड़ी की छाया की लम्बाई उसी समय माप लीजिए। बस इतने से ही उस ध्वज-स्तम्भ की लम्बाई की गणना की जा सकती है। यहाँ ध्वज-स्तम्भ और उसकी छाया का अनुपात, छड़ी और उसकी छाया के अनुपात के बराबर होगा। चूँकि इन चार राशियों में से केवल एक ही अज्ञात है, अतः ध्वज-स्तम्भ की ऊँचाई निकल जाएगी। ध्यान दीजिए कि यहाँ भी दो समरूप त्रिभुज बन रहे हैं- (१) ध्वज-स्तम्भ के आधार-बिन्दु, उसके शीर्ष बिन्दु, और उसकी छाया के शीर्ष बिन्दु से बना समकोण त्रिभुज, तथा (२) छड़ी के आधार-बिन्दु, उसके शीर्ष-बिन्दु तथा उसकी छाया के शीर्ष बिन्दु से बना समकोण त्रिभुज।

इन्हें भी देखें[संपादित करें]

बाहरी कड़ियाँ[संपादित करें]

सन्दर्भ[संपादित करें]