# संख्या पद्धतियों की सूची

यहाँ संख्या पद्धतियों की सूची दी गयी है।

## स्थानीय प्रतीक

ये सभी स्थानीय-मान पर आधारित हैं। इनमें से कुछ निम्नलिखित हैं-

### मानक (Standard)

A binary clock might use LEDs to express binary values. In this clock, each column of LEDs shows a binary-coded decimal numeral of the traditional sexagesimal time.

For the definition of standard positional numeral systems, see Non-standard positional numeral systems.

Base Name Usage
2 Binary All modern digital computations.
3 Ternary Cantor set (all points in [0,1] that can be represented in ternary with no 1s.)
4 Quaternary Data transmission and Hilbert curves.
5 Quinary
6 Senary Diceware
7 Septenary
8 Octal Charles XII of Sweden, Unix-like permissions
9 Nonary
10 Decimal Most widely used by modern civilizations.[1][2]
11 Undecimal
12 Duodecimal
13 Tridecimal The Maya calendar.
14 Tetradecimal Programming for the HP 9100A/B calculator[3] and image processing applications[4].
15 Pentadecimal Telephony routing over IP and the Huli language.
16 Hexadecimal Human-friendly representation (hex dump) of binary data and Base16 encoding.
20 Vigesimal Celtic numerals, Maya numerals
24 Tetravigesimal
26 Hexavigesimal
27 Septemvigesimal Telefol and Oksapmin languages.
30 Trigesimal
32 Duotrigesimal Base32 encoding and the Ngiti language.
36 Hexatridecimal Base36 encoding.
60 Sexagesimal The Babylonian numerals positional numeral system.
64 Tetrasexagesimal Base64 encoding.
85 Ascii85 encoding.

### Non-standard

#### Bijective numeration

Base Name Usage
1 Unary Tally marks.
10 Decimal without a zero

#### Signed-digit representation

Base Name Usage
3 Balanced ternary Ternary computers.

#### Negative bases

The common names of the negative base numeral systems are formed using the prefix nega-, giving names such as:

Base Name Usage
−2 Negabinary
−3 Negaternary

#### Complex bases

Base Name Usage
2i Quater-imaginary base
−1 ± i Twindragon base Twindragon fractal shape.

#### Non-integer bases

Base Name Usage
φ Golden ratio base Early Beta encoder.[5]
e Base e
π Base π
√2 Base √2

## गैर-स्थानीय अंकन (non-positional notation)

बेबिलोन अंकों (Babylonian numerals) के पहले विकसित सभी संख्या पद्धतियाँ स्थानीय मान पर आधारित नहीं हैं।

## अंक

नाम आधार नमूना सर्वप्रथम कब प्रयुक्त हुआ (लगभग)
बेबीलोनी अंक 60 3100 B.C.
ग्रीक अंक 10 α β γ δ ε ϝ ζ η θ ι
रोमन अंक 10 I II III IV V VI VII VIII IX X 1000 B.C.
चीनी छड़ अंक]] 10 1st century
हिन्दू अंक 10 0 1 2 3 4 5 6 7 8 9 10 9वीं शताब्दी

## सन्दर्भ

1. The History of Arithmetic, Louis Charles Karpinski, 200pp, Rand McNally & Company, 1925.
2. Histoire universelle des chiffres, Georges Ifrah, Robert Laffont, 1994 (Also: The Universal History of Numbers: From prehistory to the invention of the computer, Georges Ifrah, ISBN 0-471-39340-1, John Wiley and Sons Inc., New York, 2000. Translated from the French by David Bellos, E.F. Harding, Sophie Wood and Ian Monk)
3. "संग्रहीत प्रति". मूल से 5 फ़रवरी 2012 को पुरालेखित. अभिगमन तिथि 20 जुलाई 2012.
4. See a patent Archived 7 फ़रवरी 2012 at the वेबैक मशीन. at Free Patents Online
5. Ward, Rachel (2008), "On Robustness Properties of Beta Encoders and Golden Ratio Encoders", IEEE Transactions on Information Theory, 54 (9): 4324–4334, डीओआइ:10.1109/TIT.2008.928235