"खगोलीय यांत्रिकी": अवतरणों में अंतर

मुक्त ज्ञानकोश विकिपीडिया से
नया पृष्ठ: '''खगोलीय यांत्रिकी''' (Celestial mechanics) में आकाशीय पिंडों (heavenly bodies) की गतियों क...
 
छो r2.7.1) (robot Adding: fa:مکانیک سماوی
पंक्ति 48: पंक्ति 48:
[[en:Celestial mechanics]]
[[en:Celestial mechanics]]
[[es:Mecánica celeste]]
[[es:Mecánica celeste]]
[[fa:مکانیک سماوی]]
[[fi:Taivaanmekaniikka]]
[[fr:Mécanique céleste]]
[[fr:Mécanique céleste]]
[[gl:Mecánica celeste]]
[[gl:Mecánica celeste]]
[[hu:Égi mechanika]]
[[id:Mekanika benda langit]]
[[id:Mekanika benda langit]]
[[it:Meccanica celeste]]
[[it:Meccanica celeste]]
[[ja:天体力学]]
[[lb:Himmelsmechanik]]
[[lb:Himmelsmechanik]]
[[lt:Dangaus mechanika]]
[[lt:Dangaus mechanika]]
[[hu:Égi mechanika]]
[[nl:Hemelmechanica]]
[[nl:Hemelmechanica]]
[[ja:天体力学]]
[[no:Himmelmekanikk]]
[[no:Himmelmekanikk]]
[[pl:Mechanika nieba]]
[[pl:Mechanika nieba]]
पंक्ति 63: पंक्ति 65:
[[sk:Nebeská mechanika]]
[[sk:Nebeská mechanika]]
[[sl:Nebesna mehanika]]
[[sl:Nebesna mehanika]]
[[fi:Taivaanmekaniikka]]
[[sv:Celest mekanik]]
[[sv:Celest mekanik]]
[[th:กลศาสตร์ท้องฟ้า]]
[[th:กลศาสตร์ท้องฟ้า]]

17:50, 29 जनवरी 2011 का अवतरण

खगोलीय यांत्रिकी (Celestial mechanics) में आकाशीय पिंडों (heavenly bodies) की गतियों के गणितीय सिद्धांतों का विवेचन किया जाता है। न्यूटन द्वारा प्रिंसिपिया में उपस्थापित गुरुत्वाकर्षण नियम तथा तीन गतिनियम खगोलीय यांत्रिकी के मूल आधार हैं। इस प्रकार इसमें विचारणीय समस्या द्वितीय वर्ण के सामान्य अवकल समीकरणों के एक वर्ग के हल करने तक सीमित हो जाती है।

इतिहास

17वीं शताब्दी के प्रारंभ में जोहैन केप्लर (Johann Kepler) ने ग्रहगति के तीन प्रसिद्ध अनुभूतिमूलक (empirical) नियमों का निर्माण किया, जिनके साथ उसका नाम जुड़ा है। ये नियम न्यूटन के गुरु त्वाकर्षण तथा गति के तीन आधारभूत नियमों के दो कायों पर प्रयोग के उपफल (corollary) हैं तथा इस प्रकार ये न्यूटन की प्राक्‌कल्पना (hypothesis) को पुष्ट करते हैं। न्यूटन के तीन गतिनियम सदा एक जड़ता प्रणाली (inertial system) के संदर्भ में हैं, जिसका प्राय: पर्याप्त सूक्ष्मता के साथ आकाशगंगा के सापेक्ष स्थिर प्रणाली से एकात्म स्थापित किया जा सकता है। दो कायों के प्रश्नों को तीन कायों के प्रश्नों तक तथा व्यापक रूप में ‘न’ (n) कायों के प्रश्नों तक विस्तृत करने में बहुत कठिनाई उपस्थित होती है। दो कायों के प्रश्नों के विपरीत ‘न’ कायों के प्रश्न, यदि न दो से अधिक हो तो, हल नहीं होते। सौर परिवार, जिसमें सूर्य तथा नवग्रह हैं, और अधिकांश ग्रह उपग्रहोंवाले हैं, एक बहुकायिक प्रश्न प्रस्तुत करता है। इसी प्रकार सूर्य, पृथ्वी तथा चंद्रमा की संहति (system) तीन कायों के प्रश्न का उदाहरण है।

खगोलीय यांत्रिकी संबंधी नियमनिर्माण के प्रारंभिक दिनों में ही गणितज्ञ ज्योतिषियों का ध्यान तीन कायों के प्रश्न की ओर गया था। इस प्रश्न के हल के लिए बीजगणितीय प्रकृति से दस ज्ञात अनुकल अपेक्षित हैं। इस प्रश्न का समीकरण 18 वर्णों की संहति का है, जिसे जोसेफ लुई लाग्रांज (Joseph Louis Lagrange) ने दस अनुकलों की सहायता, पातविलोपन (elimination of nodes) तथा कालविलोपन (elimination of time) के छह वर्णों के समीकरण में सीमित कर दिया था। परु ष दशा (rigorous case) में इससे अधिक लाघव (reduction) संभव नहीं था। ऐसी दशा में, जिसमें एक काय का द्रव्यमान अत्यल्प मान लिया जाय और वह ऐसे दो द्रव्यमानों के क्षेत्र में गतिशील हो जो वृत्ताकार कक्षाओं में भ्रमण करते हों, समस्या सीमित हो जाती है और इसका हल सरल है। व्यापक रूप में तीन कायों के प्रश्न का हल मिल सकता है, जिसे संसृत घात श्रेणियों में व्यक्त किया जा सकता है। इस विधि का के. एफ. सुंडमान ने प्रयोग किया था। ‘न’ कायों के प्रश्न में ग्रहों के परस्पर आकर्षण की तुलना में सूर्य का आकर्षण अधिक होता है। इसके कारण उत्तरोत्तर आसन्नीकरण (approximation) की विधि का प्रयोग किया जा सकता है। अन्य ग्रहों की उपस्थिति के कारण ग्रहकक्षाओं के दीर्घवृत्ताकार में होनेवाले विचलन क्षोभ (perturbations) कहलाते हैं। लाग्रांज ने ग्रहों के क्षोभों की गणना के लिये एक विधि निकाली थी। दीर्घवृत्ताकार कक्षा में छह स्थिरांक होते हैं, जिन्हें अवयव कहते हैं। क्षुब्ध कक्षा में छह अवयवों को काल का फलन माना जा सकता है। लाग्रांज की विधि से इन फलनों के अवकलजों के लिये वैश्लेषिक व्यंजक आ जाते हैं, जिनके अनुकूलन के लिए उत्तरोतर आसन्नीकरण की विधि का प्रयोग करना पड़ता है। छह अवयवों के अंतिम रूप में आवर्तक पद (periodic terms) और काल के अनुपाती पद अर्थात्‌ तथाकथित दीर्घकालिक पद (secular terms) रहते हैं। क्षोभ के प्रश्न को हल करने की दूसरी विधि यह है कि सीधे नियामकों (co-ordinates) में ही क्षोभों को निकाल लिया जाय। इस प्रचार की विधियों का लाप्लास (Laplace) तथा न्यूकॉम्ब (Newcomb) ने प्रयोग किया था।

नेप्चून का आविष्कार ग्रहगति के सिद्धांत की महत्वूपर्ण सफलता है। जे. सी. ऐडम्स (Adams) तथा बी. जे. ज. लेवेरियर (Leverrier) ने यूरेनस ग्रह की गति के क्षोभों का विचार करते समय सिद्धांत रूप से इसकी सत्ता तथा आकश में इसकी स्थिति की भविष्यवाणी की थी।

चंद्रमा तथा व्यापक रूप में उपग्रहों की गति ग्रहों की गति से भिन्न है। इनमें पहली गति पिछली से बहुत द्रुत है। अत: जिस प्रकार ग्रहों के सिद्धांत में काल क्षोभ के पदों के गुणक रूप में आता है, वैसा नहीं होने दिया जा सकता। इसलिये ऐसे सिद्धांत के निर्माण की आवश्यकता है जो इस दोष से रहित हो। उपग्रहों की गति के विवेचन के लिये चंद्रमा का सिद्धांत सर्वोत्तम है। यह प्रयत्न किया गया है कि चंद्रमा के सिद्धांतों में प्रयुक्त अधिक शुद्ध विधियों का ग्रहगति के प्रश्नों में प्रयोग किया जा सके। न्यूटन का गुरु त्वाकर्षण नियम द्रव्यकणों के लिये विहित है। खगोलीय यांत्रिकी की समस्याओं में आकाशीय पिंडों को सामान्यत: बिंदुद्रव्य मान से व्यक्त किया जाता है। सांत काय, जिनका द्रव्यमान गोलीय समिति से बँटा है, एक दूसरे को इस प्रकार आकर्षित करते हैं मानों तुल्यमान के द्रव्यकण केंद्र में निहित हों। किंतु आकाशीय पिंड गोलाकार नहीं हैं। दूरी बढ़ने से गोलाकार न होने के प्रभाव का दोष इस प्रकार कम हो जाता है कि पर्याप्त दूरी पर स्थित दो कायों की दशा में गोलाकर न होने का प्रभाव महत्वूपर्ण नहीं होता। यदि दो काय परस्पर निकट हों, जैसे शनि तथा उसका सबसे भीतरी उपग्रह हैं, तो इसका प्रभाव काफी दृश्य होता हैं।

यह अच्छी तरह ज्ञात हो चुका है कि न्यूटन का विश्वव्यापी गुरुत्वाकर्षण नियम तथा तीन गतिनियम आसन्न रूप में शुद्ध हैं। शुद्ध गतिनियम तो सापेक्षवाद ही प्रस्तुत करता है, तथापि ज्योतिष की अधिकांश समस्याओं में आपेक्ष शोधन अति न्यून होते हैं। बुध के रविनीच की गति में आपेक्ष प्रभाव काफी दृश्य होता है और इसे वेध द्वारा भी पुष्ट किया जा चुका है। खगोलीय यांत्रिकी में प्राय: अपनाई जानेवाली विधि यह है कि पहले न्यूटन के सिद्धांतों से गणना कर ली जाती है तथा बाद में आपेक्ष प्रभावों के लिये उपयुक्त शोधन कर दिया जाता है।

इन्हें भी देखें

बाहरी कड़ियाँ

  • Calvert, James B. (2003-03-28), Celestial Mechanics, University of Denver, अभिगमन तिथि 2006-08-21
  • Astronomy of the Earth's Motion in Space, high-school level educational web site by David P. Stern

Research

Artwork

Course notes

Associations

Simulations