"अवकलज" के अवतरणों में अंतर

Jump to navigation Jump to search
12 बैट्स् जोड़े गए ,  5 वर्ष पहले
सम्पादन सारांश रहित
किसी चर राशि के किसी अन्य चर राशि के सम्बन्ध में तत्कालिक बदलाव के दर की गणना को '''अवकलन''' (Differentiation) कहते हैं तथा इस क्रिया द्वारा प्राप्त दर को '''अवकलज''' (Derivative) कहते हैं।
 
किसी [[फलन]] के किसी चर रासि के साथ बढ़ने की दर को मापता है। जैसे यदि कोई फलन y किसी चर रासि x पर निर्भर है और x का मान x1 से x2 करने पर y का मान y1 से y2 हो जाता है तो (y2-y1)/(x2-x1) को y का x के सन्दर्भ में अवकलज कहते हैं। इसे dy/dx से निरूपित किया जाता है। ध्यान रहे कि परिवर्तन (x2 - x1) सूष्मसूक्ष्म से सूक्ष्मतम (tend to zero) होना चाहिये। इसीलिये [[सीमा (गणित)|सीमा]] (limit) का अवकलन में बहुत महत्वपूर्ण स्थान है। किसी [[वक्र]] (curve) का किसी बिन्दु पर प्रवणता (slope) जानने के लिये उस बिन्दु पर अवकलज की गणना करनी पड़ती है।
 
; परिभाषा

दिक्चालन सूची