"श्रोडिंगर समीकरण": अवतरणों में अंतर

मुक्त ज्ञानकोश विकिपीडिया से
पंक्ति 61: पंक्ति 61:
<math> \frac{1}{2} \frac {m^2 (v_x^2 + v_y^2 + v_z^2)}{m} = \frac{1}{2} \frac{(p_x^2 + p_y^2 + p_z^2)}{m} \qquad (2)</math>
<math> \frac{1}{2} \frac {m^2 (v_x^2 + v_y^2 + v_z^2)}{m} = \frac{1}{2} \frac{(p_x^2 + p_y^2 + p_z^2)}{m} \qquad (2)</math>


जहाँ <math> p_x, p_y, p_z </math> गति वेक्टर के, तीन आयाम कार्तीय निर्देशांक के अनुसार, घटक हैं | क्वांटम यांत्रिकी में <math> -i \hbar \vec \nabla </math> गति ऑपरेटर है |
जहाँ <math> p_x, p_y, p_z </math> गति वेक्टर के, तीन आयाम कार्तीय निर्देशांक के अनुसार, गति वेक्टर के घटक हैं | क्वांटम यांत्रिकी में <math> -i \hbar \vec \nabla </math> गति ऑपरेटर (momentum operator) है, जहाँ पर


<math> \nabla = \hat i \frac{\partial}{\partial x} + \hat j \frac{\partial}{\partial y} + \hat k \frac{\partial}{\partial z} </math> होता है |
इस ऑपरेटर का मूल आंशिक अंतर कलन में है | अगर यह ऑपरेटर एक खास श्रेनी के फंक्शन, जिसे आईगेनफंक्शन कहते है, पर कार्य करता है तो इस कार्य का परिणाम वही फंक्शन एक निरंतर अंक से गुणित, जिसे आईगेनवेल्यू कहते है, होता है | आईगेनफंक्शन ऑपरेटर निर्भर होता है | यह आईगेनवेल्यू इस ऑपरेटर के मामले में कण की गती बताती है | क्वांटम यांत्रिकी में कई ऑपरेटर होते है, यह ऑपरेटर वही चर होते है जो एक कण के लिए प्रयोगों द्वारा मापें जा सकते हैं | इन चरों को 'अवलोकनयोगी' (observables) कहते हैं | गती, रफतार, स्थान अौर ऊर्जा अवलोकनयोगी चरें हैं |


इसे 'डेल् ऑपरेटर' (Del Operator) कहते हैं | इस ऑपरेटर का मूल आंशिक अंतर कलन में है | अगर यह ऑपरेटर एक खास श्रेनी के फंक्शन (function), जिसे आईगेनफंक्शन (eigenfunction) कहते है, पर कार्य करता है तो इस कार्य का परिणाम वही फंक्शन एक निरंतर अंक से गुणित, जिसे आईगेनवेल्यू (eigenvalue) कहते है, होता है | आईगेनफंक्शन ऑपरेटर निर्भर होता है | यह आईगेनवेल्यू इस ऑपरेटर के मामले में कण की गती बताती है | क्वांटम यांत्रिकी में कई ऑपरेटर होते है, यह ऑपरेटर वही चर होते है जो एक कण के लिए प्रयोगों द्वारा मापें जा सकते हैं | इन चरों को 'अवलोकनयोगी' (observables) कहते हैं | गती, रफतार, स्थान अौर ऊर्जा अवलोकनयोगी चरें हैं |
एक आयाम में गती ऑपरेटर का समिकरण <math> -i \hbar \frac {\partial}{\partial x} </math> होता है |

एक आयाम, कार्तीय निर्देशांक के <math> x </math> दिशामें, गती ऑपरेटर का समिकरण <math> -i \hbar \hat i \frac {\partial}{\partial x} </math> होता है | तो कोई फंक्शन <math> \psi (x, t) </math> पर गती ऑपरेटर के कार्य करने से अगर

<math> -i \hbar \vec \nabla \psi (x, t) = \hat p \psi (x, t) </math> मिलता है, तो <math> \psi (x, t) </math> को ऑपरेटर का आईगेनफंक्शन कहते हैं और

<math> \hat p </math> को <math> \psi (x, t) </math> का आईगेनवेल्यू कहते हैं | इस मामले में इस आईगेनवेल्यू को 'गती आईगेनवेल्यू' (momentum eigenvalue) कहते हैं |


== सन्दर्भ ==
== सन्दर्भ ==

16:54, 24 नवम्बर 2014 का अवतरण

क्वांटम यांत्रिकी में, स्क्रोडिंगर समीकरण हमे यह बतती है की किसी फिज़िकल सिस्टम की क्वेंटम अवस्था समय के अनुसार कैसे बदलती है|यह १९२५ मे तैयार तथा १९२६ मे ऑस्ट्रिया के भौतिक विज्ञानी इरविन श्रोडिंगर. द्वारा प्रकासित की गयी| क्लॅसिकल यांत्रिकी मे समेय की समीकरण (ईक्वेशन ऑफ मोशन)[1] न्यूटन के दूसरे नियम मे, एउलेर लग्रअंजी समीकरण हमे टेम प्रारंभिक सेटिंग्स और सिस्टम के विन्यास के बारे मे बताता है| क्वांटम यांत्रिकी के मानक व्याख्या में वेवफंकशन हमे फिज़िकल स्टेट की पूर्ण जानकारी देता है |श्रोडिंगर समीकरण ना केवल परमाणु, आणविक और उपपरमाण्विक अवस्था की जानकारी देता है बल्कि मैक्रो सिस्टम (सुछ्म), सम्भवतिए पूरे ब्रह्मांड की जानकारी भी देता है|

समीकरण

समय - निर्भर समीकरण

सबसे सामान्य रूप मे समय पर निर्भर समीकरण है, जो एक समय के साथ विकसित प्रणाली का विवरण देती है |[2] :

समय - निर्भर श्रोडिंगर समीकरण (सामान्य)

जहां Ψ क्वांटम प्रणाली का वेव फँगशेन है|i काल्पनिक इकाई है, ħ कम प्लैंक स्थिरांक है|हमीलटोनियँ ऑपरेटर है|

ईक वेव फनगश्न

सबसे प्रसिद्ध उदाहरण एक गैर - रेलेटिविस्टिक श्रोडिंगर समीकरण एक कण (एलेक्ट्रिक फिलेड के लिए) के लिए (लेकिन एक चुंबकीय क्षेत्र के लिए नही)

'समय - निर्भर श्रोडिंगर समीकरण (गैर - रेलेटिविस्टिक श्रोडिंगर समीकरण एक कण (एलेक्ट्रिक फिलेड के लिए) के लिए)

श्रोडिंगर समीकरण का हल

एक बॉक्स में कण

कल्पना कीजिए की एक कमरे में एक कण बंद है | वह कण सिर्फ उस कमरे में कैद है | क्योंकि इस कण पर कोई भी बाहरी बल नहीं है, इसलिए इस कण के पास गतिज ऊर्जा (kinetic energy) है | किसी भी न्यूटोनियन कण के लिए गतिज ऊर्जा का समिकरण होता है जहाँ तीन आयाम कार्तीय निर्देशांक के अनुसार वेग वेक्टर है | अगर इस वेग वेक्टर के घटकों को माना जाए तो गतिज ऊर्जा का समिकरण को

इन घटकों के हिसाब से भी लिखा जा सकता है | अगर समिकरण के दाईं ओर पर मीटर और विभाजक दोनों को से गुणा किया जाए तो

जहाँ गति वेक्टर के, तीन आयाम कार्तीय निर्देशांक के अनुसार, गति वेक्टर के घटक हैं | क्वांटम यांत्रिकी में गति ऑपरेटर (momentum operator) है, जहाँ पर

होता है |

इसे 'डेल् ऑपरेटर' (Del Operator) कहते हैं | इस ऑपरेटर का मूल आंशिक अंतर कलन में है | अगर यह ऑपरेटर एक खास श्रेनी के फंक्शन (function), जिसे आईगेनफंक्शन (eigenfunction) कहते है, पर कार्य करता है तो इस कार्य का परिणाम वही फंक्शन एक निरंतर अंक से गुणित, जिसे आईगेनवेल्यू (eigenvalue) कहते है, होता है | आईगेनफंक्शन ऑपरेटर निर्भर होता है | यह आईगेनवेल्यू इस ऑपरेटर के मामले में कण की गती बताती है | क्वांटम यांत्रिकी में कई ऑपरेटर होते है, यह ऑपरेटर वही चर होते है जो एक कण के लिए प्रयोगों द्वारा मापें जा सकते हैं | इन चरों को 'अवलोकनयोगी' (observables) कहते हैं | गती, रफतार, स्थान अौर ऊर्जा अवलोकनयोगी चरें हैं |

एक आयाम, कार्तीय निर्देशांक के दिशामें, गती ऑपरेटर का समिकरण होता है | तो कोई फंक्शन पर गती ऑपरेटर के कार्य करने से अगर

मिलता है, तो को ऑपरेटर का आईगेनफंक्शन कहते हैं और

को का आईगेनवेल्यू कहते हैं | इस मामले में इस आईगेनवेल्यू को 'गती आईगेनवेल्यू' (momentum eigenvalue) कहते हैं |

सन्दर्भ

  1. Schrödinger, E. (1926). "An Undulatory Theory of the Mechanics of Atoms and Molecules" (PDF). Physical Review. 28 (6): 1049–1070. डीओआइ:10.1103/PhysRev.28.1049. बिबकोड:1926PhRv...28.1049S. मूल (PDF) से 2008-12-17 को पुरालेखित.
  2. Shankar, R. (1994). Principles of Quantum Mechanics (2nd संस्करण). Kluwer Academic/Plenum Publishers. पृ॰ 143. आई॰ऍस॰बी॰ऍन॰ 978-0-306-44790-7.

बाहरी लिंक