"क्रमचय-संचय" के अवतरणों में अंतर

Jump to navigation Jump to search
2 बैट्स् नीकाले गए ,  6 वर्ष पहले
छो
बॉट: कोष्टक () की स्थिति सुधारी।
छो (Bot: Migrating 60 interwiki links, now provided by Wikidata on d:q76592 (translate me))
छो (बॉट: कोष्टक () की स्थिति सुधारी।)
'''क्रमचय-संचय''' (Combinatorics) [[गणित]] की शाखा है जिसमें गिनने योग्य [[विवर्त]] (discrete) संरचनाओं ( structures) का अध्ययन किया जाता है।
 
[[शुद्ध गणित]], [[बीजगणित]], [[प्रायिकता सिद्धांत]], [[टोपोलोजी]] तथा [[ज्यामिति]] आदि गणित के विभिन्न क्षेत्रों में क्रमचय-संचय से संबन्धित समस्याये पैदा होतीं हैं। इसके अलावा क्रमचय-संचय का उपयोग [[इष्टतमीकरण]] (आप्टिमाइजेशन), [[संगणक विज्ञान]], एर्गोडिक सिद्धांत (ergodic theory) तथा [[सांख्यिकीय भौतिकी]] में भी होता है। [[ग्राफ सिद्धांत]], क्रमचय-संचय के सबसे पुराने एवं सर्वाधिक प्रयुक्त भागों में से है। ऐतिहासिक रूप से क्रमचय-संचय के बहुत से प्रश्न विलगित रूप में उठते रहे थे और उनके तदर्थ हल प्रस्तुत किये जाते रहे। किन्तु बीसवीं शताब्दी के उत्तरार्ध में शक्तिशाली एवं सामान्य सैद्धांतिक विधियाँ विकसित हुईं और क्रमचय-संचय गणित की स्वतंत्र शाखा बनकर उभरा।
== इतिहास ==
 
क्रमचय-संचय से संबंधित सरल प्रश्न काफी प्राचीन काल से ही उठते और हल किये जाते रहे हैं। ६ठी शताब्दी ईसा पूर्व में [[भारत]] के महान आयुर्विज्ञानी [[सुश्रुत]] ने [[सुश्रुतसंहिता]] में कहा है कि ६ भिन्न स्वादों के कुल ६३ संचय (कंबिनेशन) बनाये जा सकते हैं ( एक बार में केवल एक स्वाद लेकर, एकबार में दो स्वाद लेकर ... इस प्रकार कुल 26-1 समुच्चय बन सकते हैं।) ८५० ईसवी के आसपास भारत के ही एक दूसरे महान गणितज्ञ [[महावीर (गणितज्ञ)]] ने [[क्रमचय|क्रमचयों]] एवं [[संचय|संचयों]] की संख्या निकालने के लिये एक सामान्यीकृत सूत्र बताया। भारतीय गणितज्ञों ने ही द्विपद गुणांक निकाले जो आगे चलकर [[पास्कल त्रिकोण]] नाम से प्रसिद्ध हुए।
 
बीसवीं शताब्दी के उत्तरार्ध में क्रमचय-संचय के अध्ययन ने त्वरित गति प्राप्त की और इस विषय के दर्जनों जर्नल अस्तित्व में आये तथा इस विषय पर कई [[संगोष्ठी|संगोष्ठियाँ]] हुईँ।

दिक्चालन सूची