सामग्री पर जाएँ

लामी का प्रमेय

मुक्त ज्ञानकोश विकिपीडिया से
लामी के प्रमेय में प्रयुक्त संकेतों के अर्थ

लामी का प्रमेय (Lami's theorem) गति विज्ञान में तीन एकतलीय एवं एकबिन्दुगामी बलों के अन्तर्गत किसी पिण्ड के संतुलन की दशा में प्रत्येक बल शेष दो बलों के बीच कोण की ज्या (sine) के समानुपाती होता है। लामी के प्रमेय के अनुसार -

यदि कोई पिण्ड तीन एकतलीय (coplaner) एवं एकबिन्दुगामी बलों के अन्तर्गत संतुलन की स्थिति में है तो निम्नलिखित समीकरण लागू होता है-
जहाँ A, B एवं C तीनों बलों के परिमाण हैं तथा
α, β और γ बलों A, B एवं C के सम्मुख कोण हैं। अर्थात कोण α बल B एवं बल C के बीच का कोण है।

इस प्रमेय का नाम बर्नार्ड लामी (गणितज्ञ) के नाम पर पड़ा है। इसका उपयोग स्थैतिक विश्लेषण एवं यांत्रिक व संरचनात्मक तंत्रों के विश्लेषण में किया जाता है।

उपपत्ति

[संपादित करें]

संतुलन की स्थिति में तीनों बलों का सदिश योग शून्य होगा। अतः इन सदिशों को इस प्रकार सजाया जाय कि एक सदिश के आरम्भिक बिन्दु दूसरे सदिश के अन्तिम बिन्दु पर हो तो एक त्रिभुज बन जायेगा जिसकी भुजाओं की लम्बाई A,B,C तथा कोणों की माप होगी। इस त्रिभुज में ज्या नियम का उपयोग करने पर,

चूंकि , अतः

इन्हें भी देखें

[संपादित करें]