रिक्त परिकल्पना
इस लेख को व्याकरण, शैली, संसंजन, लहजे अथवा वर्तनी के लिए प्रतिलिपि सम्पादन की आवश्यकता हो सकती है। आप इसे संपादित करके मदद कर सकते हैं। (June 2009) |
रिक्त परिकल्पना एक ऐसी अवधारणा है (सांख्यिकीय परिकल्पना परीक्षण के फ़्रेक़ुएन्तिस्त संदर्भ में) जिसे अवलोकित डाटा के परीक्षण का उपयोग कर ग़लत साबित किया जा सकता है।[1] इस तरह का परीक्षण एक रिक्त परिकल्पना की विधिवत रचना कर, डाटा का संग्रह कर, तथा इस बात की गणना करके कि डाटा कितना संभावित है, कार्य करता है, तथा इस परीक्षण हेतु ऐसी कल्पना की जाती है कि रिक्त परिकल्पना सही थी। यदि डाटा बहुत असम्भाव्य प्रतीत होता है (आमतौर पर ऐसा डाटा होता है जो 5% से भी कम अवलोकित होता है), तो प्रयोगकर्ता यह निष्कर्ष निकालता है कि रिक्त परिकल्पना गलत है। यदि डाटा रिक्त परिकल्पना के तहत यथोचित प्रतीत होता है तो कोई निष्कर्ष नहीं निकाला जाता है। इस मामले में, रिक्त परिकल्पना सच भी हो सकती है, या यह अभी भी गलत हो सकती है; ऐसा डाटा किसी भी निष्कर्ष पर पहुँचने के लिए अपर्याप्त साक्ष्य देता हैं। रिक्त परिकल्पना आमतौर पर, एक सामान्य या डिफ़ॉल्ट स्थिति प्रस्तुत करती है, जैसे कि दो परिमापों के मध्य कोई रिश्ता ही नहीं है,[2]अथवा उपचार और नियंत्रण के मध्य कोई अंतर ही नहीं है।[3] यह शब्द मूल रूप से अंग्रेजी अनुवांशिकी विज्ञानी तथा सांख्यिकीविद् रोनाल्ड फिशरद्वारा रचित है।
सांख्यिकीय परिकल्पना परीक्षण के कुछ संस्करणों में (जैसे जेर्जी नीमन तथा एगों पियर्सन द्वारा विकसित) रिक्त परिकल्पना का परीक्षण एक वैकल्पिक अवधारणा के निमित्त किया जाता है। यह विकल्प रिक्त परिकल्पना का तार्किक निषेध हो सकता है और नहीं भी हो सकता है। वैकल्पिक परिकल्पना का उपयोग रोनाल्ड फिशर के सांख्यिकीय परिकल्पना परीक्षण का भाग नहीं था, हालांकि वैकल्पिक अवधारणा आज मानक के रूप में उपयोग की जाती है।
उदाहरण के लिए, हो सकता है कि कोई इस दावे का परीक्षण करना चाहे कि एक निश्चित दवा दिल का दौरा होने के अवसरों को कम कर सकती है। कोई इस रिक्त परिकल्पना का चयन कर सकता है "यह दवा दिल का दौरा होने के अवसरों को कम नहीं करती है "(या संभवत: "इस दवा का दिल का दौरा होने की संभावना पर कोई प्रभाव नहीं है")। फिर व्यक्ति को ऐसे लोगों का अवलोकन करके डाटा संग्रहीत करना चाहिए जो किसी नियंत्रित प्रयोग के तहत दवा ले रहे हैं अथवा नहीं ले रहे हैं। यदि रिक्त परिकल्पना के तहत डाटा बहुत असम्भाव्य है तो आप रिक्त परिकल्पना को अस्वीकार कर सकते है और, यह निष्कर्ष निकाल सकते है कि उसका निषेध सच है। अर्थात, आप यह निष्कर्ष निकाल सकते है कि दवा दिल का दौरा होने की संभावना को कम करती है। यहाँ "असम्भाव्य डाटा" का आशय उस डाटा से है जहाँ उन लोगों का प्रतिशत जो दिल का दौरा पड़ने के बाद दवा ले रहे है, ऐसे लोगों के प्रतिशत की तुलना में काफी कम है (सांख्यिकीय मानकों के अनुसार) जो दिल का दौरा पड़ने के बाद भी दवा नहीं ले रहे हैं।
रिक्त परिकल्पना का चयन करते समय आपको ख्याल रखना चाहिए क्यूंकि विभिन्न विकल्पों का उत्तर अलग-अलग हो सकता हैं। इस तथ्य को निम्नलिखित:उदाहरण में प्रदर्शित किया गया है: आपको यह तय करने के लिए कहा जाता है कि अगर सिक्का सही है (यानी कि अगर हम औसत ले तो 50% बार हेड आना चाहिए)। आप इसे 5 बार उछालते है और हर बार हेड आता हैं। क्या आप यह निष्कर्ष निकालते है कि यह एक निष्पक्ष सिक्का नहीं है? एक वैकल्पिक परिकल्पना यह है कि "यह सिक्का हेड के प्रति पक्षपाती है". रिक्त परिकल्पना यह होगी "यह सिक्का हेड के प्रति पक्षपाती नहीं है", जिसका मतलब यह है कि कम से कम जितनी बार हेड आयेगा उतनी बार टेल आयेगा. इस रिक्त परिकल्पना के तहत, डाटा वास्तव में असम्भाव्य है (यह कम से कम 3% बार होना चाहिए)। आप रिक्त परिकल्पना को अस्वीकार कर सकते है और यह निष्कर्ष निकाल सकते है कि सिक्का पक्षपाती था।
हालांकि, आप इसके बजाय वैकल्पिक परिकल्पना "सिक्का पक्षपाती है ", और रिक्त अवधारणा, " यह सिक्का निष्पक्ष है " का चयन भी कर सकते है। तब डाटा इतना असम्भाव्य नहीं होता है; समान डाटा कम से कम 6% बार घटित होना चाहिए, जहाँ 3% समय आपको हर बार हेड मिलना चाहिए तथा 3% समय आपको टेल मिलना चाहिए। तो कोई रिक्त परिकल्पना को अस्वीकार नहीं करेगा, अत: फिर कोई निष्कर्ष नहीं निकाला जायेगा. इस मामले में, दूसरी रिक्त परिकल्पना सही साबित होगी: आपको वास्तव में यह तय करने को कहा गया था कि सिक्का उचित है या नहीं, यह नहीं कि सिक्का हेड के प्रति पक्षपाती है। आपको ऐसे निष्कर्ष तक पहुँचने के लिए और अधिक डाटा की आवश्यकता होगी (और वास्तव में आपको शुरुआत हेतु भी ज्यादा डाटा की आवश्यकता होगी)।
इस दूसरे उदाहरण में परिकल्पना परीक्षण के एक खतरे के बारे में बताया गया है: यदि कोई डाटा के एक सेट का परीक्षण बड़ी संख्या में ऐसी रिक्त परिकल्पनायो के साथ करता है जो सभी सही हैं, फिर भी वह उनमें से कुछ को अस्वीकार कर सकता है, जिसके कारण गलत निष्कर्ष निकलता है। हालांकि, अगर कोई वैज्ञानिक विधि का अनुसरण करता है और डाटा एकत्रित करने से पहले रिक्त परिकल्पना का निर्माण कर लेता है, तो वह कम संख्या मे केवल पहले प्रकार की गलतिया करता है (अर्थात ऐसी सम्भावना बहुत कम है कि वह एक सही रिक्त परिकल्पना को अस्वीकार करे)। बेशक, अगर ध्यान से और सही ढंग से भी उपयोग किया जाये तब भी सांख्यिकीय परीक्षण कुछ गलत निष्कर्ष देता है।
भिन्नताओं हेतु परीक्षण
[संपादित करें]वैज्ञानिक और चिकित्सा अनुप्रयोगों में, रिक्त परिकल्पना उपचार और नियंत्रण समूहों में मतभेद के महत्व का परीक्षण करने में एक प्रमुख भूमिका निभाती है। सर्वव्यापक होते हुए भी इस उपयोग बहुत सारे आधारों पर आलोचना होती है (स्ट्रा मेन, बयेसियन क्रिटिसिस्म एंड पब्लिकेशन बिअस देखे)
प्रयोग की शुरुआत में धारणा यह होती है कि दो समूहों (जिनके वैरिएबल्स की तुलना हो रही है) के मध्य कोई अंतर नहीं हैं: यह इस उदाहरण में रिक्त परिकल्पना है अन्य प्रकार की रिक्त परिकल्पना के उदाहरण हैं:
- जनसंख्या के नमूनों से प्राप्त मानो को वितरण सांख्यिकीयके एक निश्चित वर्ग का उपयोग करके तैयार कर सकते है।
- अलग-अलग समूहों में डाटा की परिवर्तनशीलता समान है, हालांकि वे विभिन्न मूल्यों के आसपास केंद्रित हो सकते है।
उदाहरण
[संपादित करें]उदाहरण के लिए, आप महिलाओं और पुरुषों के मध्य हुए दो यादृच्छिक नमूना के परीक्षण के प्राप्तांकों से तुलना कर सकते हैं, तथा यह पूछ सकते हैं कि क्या एक जनसंख्या-समूह का औसत प्राप्तांक अन्य समूहों से अलग है। एक रिक्त परिकल्पना यह होगी कि पुरुष जनसंख्या का औसत स्कोर महिला जनसंख्या के औसत स्कोर के समान हैं:
जहाँ:
- = रिक्त परिकल्पना
- = जनसंख्या 1 का औसत है और
- = जनसंख्या 2 का औसत है।
- = जनसंख्या 1 का औसत है और
वैकल्पिक रूप से, रिक्त परिकल्पना यह सुझाव प्रदान कर सकती है कि दोनों नमूने समान जनसंख्या से तैयार हुए हैं, इस प्रकार विचरण और वितरण का आकार बराबर होगा, इसी प्रकार औसत मान भी समान होगा।
रिक्त परिकल्पना का निरूपण सांख्यिकीय महत्व के परीक्षण में महत्वपूर्ण चरण है। अगर रिक्त परिकल्पना सही है तो आप प्राप्त डाटा के अवलोकन की संभावना स्थापित कर सकते हैं (अथवा डाटा रिक्त परिकल्पना की भविष्यवाणी से बहुत भिन्न हो सकता है)। सामान्यतः संभावना को साधारणतया परिणाम के "सार्थकता स्तर" नाम दिया जाता है।
अर्थात, वैज्ञानिक प्रयोगात्मक डिजाइन में, आप यह परिकल्पना कर सकते है कि एक विशेष कारक हमारे निर्भर चर (वैरिएबल्स) पर एक प्रभाव उत्पन्न करेगा- यह वैकल्पिक परिकल्पना है। फिर हम यह विचार करेंगे कि हम अपनी प्रयोगात्मक परिणामों को कितनी बार देखने की उम्मीद करते हैं, या परिणाम और भी अधिक चरम हो सकते हैं अगर हमें एक ऐसी जनसंख्या से बहुत सारे नमूने लेने पड़े जिसमें कोई प्रभाव न हो (अर्थात हमने रिक्त परिकल्पना के विरुद्ध जांच की थी)। यदि हम यह पाते हैं कि ऐसा शायद ही होता है (मान लेते हैं 5% बार), तो हम यह निष्कर्ष निकाल सकते है कि हमारे परिणाम हमारी प्रयोगात्मक भविष्यवाणी का समर्थन करते हैं- हम अपनी रिक्त परिकल्पना को अस्वीकार करते हैं।
दिशात्मकता
[संपादित करें]रिक्त परिकल्पना के अधिकतर कथन इस प्रकार प्रदर्शित होते हैं जैसे उनमे "दिशात्मकता" ना हो, अर्थात ऐसा निश्चित है कि मान समान हैं। हालांकि, रिक्त परिकल्पना के पास "दिशा" हो सकती है तथा होती भी है- इन उदाहरणों में बहुत से उदाहरण ऐसे है जिनमें सांख्यिकीय सिद्धांत परीक्षण प्रक्रिया के निर्माण के सरल होने की अनुमति देता है, इस प्रकार का परीक्षण एक सटीक पहचान के लिए परीक्षण करने के बराबर है। उदाहरण के लिए, एक पक्षीय वैकल्पिक परिकल्पना तैयार करते समय, औषधि A का प्रयोग रोगियों में वृद्धि कर सकता हैं, तो सत्य रिक्त परिकल्पना वैकल्पिक अवधारणा के विपरीत है अर्थात् औषधि A का प्रयोग रोगियों में वृद्धि नहीं करेगा। प्रभावी रिक्त परिकल्पना औषधि A का प्रयोग होगी जिसका रोगियों में वृद्धि हेतु कोई प्रभाव नहीं होगा।
यह समझने के लिए कि क्यों प्रभावी रिक्त परिकल्पना ही मान्य है, ऊपर उल्लिखित अवधारणा की प्रकृति पर विचार शिक्षाप्रद है। ऐसी कल्पना की जाती है कि औषधि A का प्रयोग करने वाले रोगी एक ऐसे नियंत्रण समूह की तुलना में ज्यादा वृद्धि करेंगे जो औषधि का प्रयोग नहीं कर रहे हैं। अर्थात,
जहाँ:
- = रोगियों का औसत विकास.
प्रभावी रिक्त परिकल्पना .
सत्य रिक्त परिकल्पना .
न्यूनीकरण का कारण यह है कि वैकल्पिक परिकल्पना हेतु समर्थन का अनुमान लगाने के लिए, शास्त्रीय परिकल्पना परीक्षण हमें यह गणना करने के लिए मजबूर करता है कि कितनी बार हमारी प्रयोगात्मक टिप्पणियों की तुलना में हमें चरम परिणाम प्राप्त हुए हैं। यह करने के लिए, सबसे पहले हमें रिक्त परिकल्पना में सम्मिलित प्रत्येक संभावना के अस्वीकार होने की संभावना परिभाषित करने की जरूरत हैं तथा दूसरा यह सुनिश्चित करने की आवश्यकता है कि ये संभावनाएं परीक्षण के महत्तवपूर्ण स्तर की तुलना में कम या बराबर हैं। किसी भी उचित परीक्षण प्रक्रिया हेतु इन संभावनाओं में सबसे बड़ी संभावना, विशेष रूप से केवल में सम्मिलित मामलो के लिए क्षेत्र की सीमा पर घटित होगी। इस प्रकार परीक्षण प्रक्रिया को रिक्त परिकल्पना के परीक्षण हेतु बिल्कुल उसी रूप में परिभाषित कर सकते है (अर्थात महत्वपूर्ण मानों को परिभाषित किया जा सकता है) जैसे ब्याज की रिक्त परिकल्पना न्यूनतम संस्करण थी।
ध्यान दें कि कुछ ऐसे व्यक्ति भी है जो तर्क देते है कि रिक्त परिकल्पना उतनी सामान्य नहीं है जितनी की ऊपर बताई गयी है: जैसेकि फिशर, जिन्होंने सर्वप्रथम " शून्य परिकल्पना "शब्दावली का निर्माण किया, ने कहा है, "शून्य अवधारणा एकदम सटीक होनी चाहिए, अर्थात यह अस्पष्टता और संदिग्धता से मुक्त होनी चाहिए क्योंकि इसे 'वितरण की समस्या', का आधार प्रदान करना चाहिए, महत्व का परीक्षण जिसका समाधान है।"[4] इस दृष्टिकोण के अनुसार, रिक्त परिकल्पना संख्यानुसार सटीक होनी चाहिए- ऐसा निर्धारित होना चाहिए कि एक विशेष मात्रा या अंतर एक विशेष संख्या के बराबर होनी चाहिए। शास्त्रीय विज्ञान में, आम तौर पर यह कथन प्रसिद्ध है कि एक विशेष उपचार का कोई प्रभाव नहीं है, अवलोकन में, आमतौर पर यह है कि एक विशेष मूल्यांकित चर के मूल्य और भविष्यवाणी के बीच कोई अंतर नहीं है। इस दृष्टिकोण की उपयोगिता के बारे में पूछताछ होनी चाहिए- कोई भी यह नोट कर सकता है कि अभ्यास में बहुत से रिक्त परिकल्पना परीक्षण "सटीक" होने की इस कसौटी को पूरा नहीं करते. उदाहरण के लिए, सामान्य परीक्षण पर विचार करें कि दो मान समान हैं जहां variances(प्रसरण) के सच्चे मानो का पता नहीं हैं - variances के सटीक मानो का कोई उल्लेख नहीं हैं।
अधिकतर सांख्यिकीविदों का मानना है कि दिशा को रिक्त परिकल्पना के भाग के रूप में या शून्य अवधारणा/वैकल्पिक अवधारणा द्वय के एक भाग के रूप में निर्धारित करना वैध है, (उदाहरण के लिए https://web.archive.org/web/20170512041747/http://davidmlane.com/hyperstat/A73079.html देखें)। तर्क काफी सरल है: अगर दिशा को छोड़ दिया जाता है, तो अगर रिक्त परिकल्पना को अस्वीकार कर दिया है तो निष्कर्ष की व्याख्या पूरी तरह भ्रामक है। ऐसा मान लें, रिक्त का अर्थ है जनसंख्या औसत = 10 और वन-टैलेद वैकल्पिक: mean > 10. अगर x-बार के माध्यम से प्राप्त सेम्पल एविडेंस का मान -200 है और इसी के अनुकूल टी-परीक्षण आंकड़ा -50 के बराबर है, तो निष्कर्ष क्या होगा? रिक्त परिकल्पना को अस्वीकार करने के लिए क्या पर्याप्त सबूत नहीं हैं? निश्चित रूप से नहीं! लेकिन हम इस मामले में एक पक्षीय विकल्प स्वीकार नहीं कर सकते. इसलिए, इस संदिग्धता को दूर करने के लिए, अगर परीक्षण एक तरफा है तो प्रभाव की दिशा को शामिल कर लेना बेहतर है। सांख्यिकीय सिद्धांत जो यहां समझाए गए सरल मामलों और अधिक जटिल मामलों के साथ संचालन हेतु आवश्यक है वह निष्पक्ष परीक्षण परिकल्पना का उपयोग करता है।
नमूने का आकार
[संपादित करें]जब परिकल्पना परीक्षण किया जाता है तो बहुत सारी इकाइयों (जिन्हें नमूना आकार भी कहा जाता है) का उपयोग किया जाता है। यह प्रक्रिया अध्ययन में शामिल इकाइयों की संख्या पर निर्भर करती है। भले ही एक रिक्त परिकल्पना जनसंख्या में कोई मायने नहीं रखती है, फिर भी इसे अस्वीकार नहीं किया जा सकता क्योंकि नमूना आकार बहुत छोटा है। विशेष प्रयोग अथवा सर्वेक्षण के लिए नमूना आकार परीक्षण की सांख्यिकीय क्षमता, प्रभाव आकार जो पता लगाने के लिए आवश्यक है और महत्व के वांछित स्तर पर निर्भर करता है सांख्यिकीय परीक्षण में सार्थकता स्तर रिक्त परिकल्पना के अस्वीकार होने की संभावना है जब रिक्त परिकल्पना को जनसंख्या में धारण किया गया हो। यह क्षमता रिक्त परिकल्पना के अस्वीकार होने की संभावना है जब रिक्त परिकल्पना को जनसंख्या में धारण नहीं किया गया हो (उदाहरणार्थ एक विशेष प्रभाव आकार हेतु)। नमूने का आकार जो परिकल्पना परीक्षण प्रक्रिया में इस्तेमाल किया जायेगा, से सम्बंधित निर्णय इन तीनों उपायों पर निर्भर करता है। नमूना आकार से संबंधित मुद्दें अध्ययन के योजना चरण में संदर्भित होने चाहिए।
इन्हें भी देखें
[संपादित करें]सन्दर्भ
[संपादित करें]- ↑ "संग्रहीत प्रति". मूल से 8 मार्च 2013 को पुरालेखित. अभिगमन तिथि 18 मई 2010.
- ↑ "संग्रहीत प्रति". मूल से 4 जुलाई 2010 को पुरालेखित. अभिगमन तिथि 18 मई 2010.
- ↑ "संग्रहीत प्रति". मूल से 11 अप्रैल 2010 को पुरालेखित. अभिगमन तिथि 18 मई 2010.
- ↑ फिशर, आर.ए. (1966). द डिज़ाइन ऑफ़ एक्सपेरिमेंट्स . 8वां संस्करण. हफ्नर:एडिनबर्ग.
आगे पढ़ें
[संपादित करें]- Adèr, H. J.; Mellenbergh, G. J. & Hand, D. J. (2007), Advising on research methods: A consultant’s companion, Huizen, The Netherlands: Johannes van Kessel Publishing, आई॰ऍस॰बी॰ऍन॰ 9079418013.