द्वि-प्रद्वार जालक्रम

मुक्त ज्ञानकोश विकिपीडिया से
Jump to navigation Jump to search
Figure 1: Example two-port network with symbol definitions. Notice the port condition is satisfied: the same current flows into each port as leaves that port.

द्वि-प्रद्वार जालक्रम (टू-पोर्ट नेटवर्क) ऐसे विद्युत परिपथ को कहते हैं जिसमें बाहरी जगत (नेटवरक) से जुड़ने के लिये दो-जोड़ी (अर्थात, चार) सिरे होते हैं। उदाहरण के लिये ट्रान्जिस्टर एक द्वि-पोर्ट नेटवर्क है (यद्यपि इसमें चार नहीं तीन ही सिरे होते हैं। एक सिरा इनपुट और आउटपुट दोनों प्रद्वारों में उभयनिष्ट (कॉमन) होता है।)

प्रतिबाधा प्राचल (इम्पीडैन्स पैरामीटर्स)[संपादित करें]

द्वि-प्रद्वार का z-तुल्य निरुपण जिसमें I1 और I2 स्वतन्त्र चर हैं। यद्यपि इस चित्र में प्रतिरोध दिखाये गये हैं किन्तु उनके स्थान पर प्रतिबाधा समझिए।
.

ध्यान दें कि सभी Z प्राचलों की विमा (डिमेन्शन) ओम है।

प्रवेश्यता प्राचल (ऐडमिटैन्स मैट्रिक्स)[संपादित करें]

सामने लिखे समीकरणों का Y-तुल्य निरूपण जिसमें V1 और V2 स्वतन्त्र चर हैं।
.

जहाँ

यदि हो तो इस द्वि-प्रद्वार को व्युत्क्रम द्वि-प्रद्वार कहते हैं। यह भी ध्यान दें कि सभी Y प्राचलों की विमा, सीमेन्स (siemens) है।

संकर प्राचल (हाइब्रिड पैरामीटर्स)[संपादित करें]

सामने लिखे समीकरणों का H-तुल्य प्राचलों के साथ निरूपण जिसमें I1 और V2 स्वतन्त्र चर हैं।

जहाँ

ध्यान दें कि h प्राचलों की विमाएँ अलग-अलग है। इसी लिए इन्हें संकर प्राचल कहते हैं। इसमें से जो प्राचल मुख्य तिर्यक रेखा पर नहीं हैं वे बिमारहित हैं (इनका कोई मात्रक नहीं है।)।

ABCD प्राचल[संपादित करें]

जहाँ

व्युत्क्रम नेटवर्क के लिए,. सममित नेटवर्क (सिम्मेट्रिकल नेटवर्क) के लिए, . व्युत्क्रम और ऊर्जा-ह्रास-रहित नेटवर्क के लिए, A और D वास्तविक संख्याएँ होंगी जबकि B और C पूर्णतः काल्पनिक संख्याएँ ।

g-प्राचल[संपादित करें]

.

जहाँ

समीकरण, तुल्य परिपथ , प्राचलों की परिभाषा या मापन[संपादित करें]

प्राचल समीकरण तुल्य परिपथ प्राचलों का मापन

प्राचलों का आपस में सम्बन्ध[संपादित करें]

जहाँ , [x] का सारणिक है।

कुछ मैट्रिक्स जोड़ों में बहुत सरल सम्बन्ध है। ऐडमिटैन्स पैरामीट्र्स, इम्पीडैन्स पैरामीट्र्स के मैट्रिक्स व्युत्क्रम हैं। इन्वर्स हाइब्रिड पैरामीटर्स, हाइब्रिड पैरामीट्र्स के मैट्रिक्स व्युत्क्रम हैं। इसी प्रकार ABCD-पैरामीटर्स का [b] स्वरूप, [a] स्वरूप का मैट्रिक्स व्युक्रम है। अर्थात्,