अनुकोण प्रतिचित्रण

मुक्त ज्ञानकोश विकिपीडिया से
Jump to navigation Jump to search
इस चित्र में नीचे वाली आकृति उपर वाले चित्र में बनी हुई आयताकार ग्रिड का 'इमेज' है जो एक अनुकोणी प्रतिचित्रण के द्वारा प्राप्त हुआ है। द्रष्टव्य है कि इस प्रतिचित्रण के अन्तर्गत 90° पर परस्पर काटने वाली रेखाएँ 'इमेज' में भी परस्पर 90° पर ही काटतीं हैं।

गणित में उस फलन को अनुकोणी प्रतिचित्रण (Conformal mapping या angle-preserving mapping) कहते हैं जिसके अन्तर्गत कोण अपरिवर्तित रहते हैं। प्रायः यह समिश्र तल में उपयोग किया जाता है। अनुकोण प्रतिचित्रण में अनन्त-सूक्ष्म चित्रों के कोण और स्वरूप (shape) दोनों ही सुरक्षित रहते हैं किन्तु आवश्यक नहीं है कि आकार (साइज) भी अपरिवर्तित रहे।

अनुकोणी प्रतिचित्रण का सबसे प्रसिद्ध प्रयोग मर्केटर प्रक्षेप कहलाता है जिसके द्वारा भूमंडल की आकृतियों का चित्रण समतल पर किया जाता है।

इतिहास[संपादित करें]

लैंबर्ट ने सन्‌ 1772 में उक्त प्रश्न का अधिक व्यापक रूप से अध्ययन किया। बाद में लैंग्रांज ने बताया कि इस विषय का संमिश्र चर के फलनों (फंकशंस ऑव ए कंप्लेक्स वेरिएबुल) से क्या संबंध है। सन्‌ 1822 में कोपिनहैगन की विज्ञान परिषद् ने एक पुरस्कार के लिए यह विषय प्रस्तावित किया कि एक तल के विभिन्न भाग दूसरे तल पर इस कैसे चित्रित किए जाएँ कि प्रतिबिंब के छोटे से छोटे भाग मौलिक तल के संगत भागों के अनुरूप हों? गाउस ने सन्‌ 1825 में इस समस्या का हल निकाला और वहीं से इस विषय के व्यापक सिद्धांत का आरंभ हुआ। बाद के ५० वर्षों में इस क्षेत्र के अन्य कार्यकर्ताओं में रीमान, श्वार्ज और क्लाइन उल्लेखनीय हैं।

समिश्र विश्लेषण[संपादित करें]

अनुप्रयोग[संपादित करें]

बाहरी कड़ियाँ[संपादित करें]