श्रीधराचार्य

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज

श्रीधराचार्य प्राचीन भारत के एक महान गणितज्ञ थे। इन्होंने शून्य की व्याख्या की तथा द्विघात समीकरण को हल करने सम्बन्धी सूत्र का प्रतिपादन किया।

उनके बारे में हमारी जानकारी बहुत ही अल्प है। उनके समय और स्थान के बारे में निश्चित रुप से कुछ भी नहीं कहा जा सकता है। किन्तु ऐसा अनुमान है कि उनका जीवनकाल ८७० ई से ९३० ई के बीच था; वे वर्तमान हुगली जिले में उत्पन्न हुए थे; उनके पिताजी का नाम बलदेवाचार्य औरा माताजी का नाम अच्चोका था।

कृतियाँ तथा योगदान[संपादित करें]

इन्होंने 750 ई. के लगभग दो प्रसिद्ध पुस्तकें, त्रिशतिका (इसे 'पाटीगणितसार' भी कहते हैं) , पाटीगणित और गणितसार, लिखीं। इन्होंने बीजगणित के अनेक महत्वपूर्ण आविष्कार किए। वर्गात्मक समीकरण को पूर्ण वर्ग बनाकर हल करने का इनके द्वारा आविष्कृत नियम आज भी 'श्रीधर नियम' अथवा 'हिंदू नियम' के नाम से प्रचलित है।

'पाटीगणित, पाटीगणित सार और त्रिशतिका उनकी उपलब्ध रचनाएँ हैं जो मूलतः अंकगणित और क्षेत्र-व्यवहार से संबंधित हैं। भास्कराचार्य ने बीजगणित के अंत में - ब्रह्मगुप्त, श्रीधर और पद्मनाभ के बीजगणित को विस्तृत और व्यापक कहा है - :'ब्रह्माह्नयश्रीधरपद्मनाभबीजानि यस्मादतिविस्तृतानि' ।

इससे प्रतीत होता है कि श्रीधर ने बीजगणित पर भी एक वृहद् ग्रन्थ की रचना की थी जो अब उपलब्ध नहीं है। भास्कर ने ही अपने बीजगणित में वर्ग समीकरणों के हल के लिए श्रीधर के नियम को उद्धृत किया है -

चतुराहतवर्गसमै रुपैः पक्षद्वयं गुणयेत
अव्यक्तवर्गरुयैर्युक्तौ पक्षौ ततो मूलम्‌

  • अन्य सभी भारतीय गणिताचार्यों की तुलना में श्रीधराचार्य द्वारा प्रस्तुत शून्य की व्याख्या सर्वाधिक स्पष्ट है। उन्होने लिखा है- यदि किसी संख्या में शून्य जोड़ा जाता है तो योगफल उस संख्या के बराबर होता है; यदि किसी संख्या से शून्य घटाया जाता है तो परिणाम उस संख्या के बराबर ही होता है; यदि किसी शून्य को सकिसी भी संख्या से गुणा किया जाता है तो गुणनफल शून्य ही होगा। उन्होने इस बारे में कुछ भी नहीं कहा है कि किसी संख्या में शून्य से भाग करने पर क्या होगा।
  • किसी संख्या को भिन्न (fraction) द्वारा भाजित करने के लिये उन्होने बताया है कि उस संख्या में उस भिन्न के व्युत्क्रम (reciprocal) से गुणा कर देना चाहिये।
  • उन्होने बीजगणित के व्यावहारिक उपयोगों के बारे में लिखा है और बीजगणित को अंकगणित से अलग किया।
  • वर्ग समीकरण का हल प्रस्तुत करने वाले आरम्भिक गणितज्ञों में श्रीधराचार्य का नाम अग्रणी है।

वर्ग समीकरण हल करने की श्रीधराचार्य विधि[संपादित करें]

ax2 + bx + c = 0

4a2x2 + 4abx + 4ac = 0 ; ( 4a से गुणा करने पर )

4a2x2 + 4abx + 4ac + b2 = 0 + b2 ; (दोनों पक्षों में b2 जोड़ने पर)

(4a2x2 + 4abx + b2 ) + 4ac = b2

(2ax + b)(2ax + b) + 4ac = b2

(2ax + b)2 = b2 - 4ac

(2ax + b)2 = (√D)2 ; ( D = b2-4ac )

अतः x के दो मूल (रूट) निम्नलिखित हैं-

पहला मूल α = (-b - √(b2-4ac)) / 2a

दूसरा मूल β = (-b + √(b2-4ac)) / 2a

Ġx2+y2तिरछे अक्षर

इन्हें भी देखें[संपादित करें]

बाहरी कड़ियाँ[संपादित करें]