वर्गाकार

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज

वर्ग
2-cube column graph.svg
वर्ग की भुजाएं एवं विकर्ण आपस में समकोण पर मिलते हैं
किनारे एवं शीर्ष 4
श्लाफ्ली चिन्ह {4}
{}x{}
en:Coxeter–Dynkin diagram CDW ring.pngCDW 4.pngCDW dot.png
CDW ring.pngCDW 2.pngCDW ring.png
सममिति समूह डाईहेडरल (D4)
क्षेत्रफल
(with t=edge length)
t2
आंतरिक कोण
(अंश
90°

तलीय यूक्लिड ज्यामिति में वर्ग एक सम-चतुर्भुज है, जिसके चारो कोण ९० अंश के होते हैं।

वर्गीकरण[संपादित करें]

वर्ग आयत की एक विशेष दशा है, क्योंकि इसमें चार समकोण हैं। वैसे ही यह सम चर्तुर्भुज (रोम्बस), एवं समानांतर चतुर्भुज की भी विशेष दशा है।

मापन सूत्र[संपादित करें]

वर्ग का क्षेत्रफल उसकी भुजा के वर्ग के बराबर होता है।

t भुजा वाले वर्ग का परिमाप (पेरिमीटर) :

P=4t.

एवं क्षेत्रफल है:

A=t^2.

मानक निर्देशांक[संपादित करें]

मूल में केन्द्रित वर्ग जिसकी भुजा लम्बाई 2 है, की भुजाओं के निर्देशांक हैं (±1, ±1), जबकि उसके आंतरिक क्षेत्र में सभी बिंदु (x0, x1) सम्मिलित हैं, &ऋणात्मक;1 < xi < 1.

गुण[संपादित करें]

वर्ग का प्रत्येक कोण समकोण है, यानि 90 अंश पर है।

अन्य तथ्य[संपादित करें]

  • It has all equal sides and the angles add up to 360 degrees. Wyoming is also a square because it has that nickname(see State nicknames).
  • If a circle is circumscribed around a square, the area of the circle is \pi/2 (about 1.57) times the area of the square.
  • If a circle is inscribed in the square, the area of the circle is \pi/4 (about 0.79) times the area of the square.
  • A square has a larger area than any other quadrilateral with the same perimeter ([1]).
  • A square tiling is one of three regular tilings of the plane (the others are the equilateral triangle and the regular hexagon).
  • The square is in two families of polytopes in two dimensions: hypercube and the cross polytope. The Schläfli symbol for the square is {4}.
  • The square is a highly symmetric object. There are four lines of reflectional symmetry and it has rotational symmetry through 90°, 180° and 270°. Its symmetry group is the dihedral group D_4.

गैर यूक्लिड ज्यामिती[संपादित करें]

In non-euclidean geometry, squares are more generally polygons with 4 equal sides and equal angles.

In spherical geometry, a square is a polygon whose edges are great circle arcs of equal distance, which meet at equal angles. Unlike the square of plane geometry, the angles of such a square are larger than a right angle.

In hyperbolic geometry, squares with right angles do not exist. Rather, squares in hyperbolic geometry have angles of less than right angles. Larger squares have smaller angles.

Examples:

Square on sphere.png
Six squares can tile the sphere with 3 squares around each vertex and 120 degree internal angles. This is called a spherical cube. The Schläfli symbol is {4,3}.
Square on plane.png
Squares can tile the Euclidean plane with 4 around each vertex, with each square having an internal angle of 90 degrees. The Schläfli symbol is {4,4}.
Square on hyperbolic plane.png
Squares can tile the hyperbolic plane with 5 around each vertex, with each square having 72 degree internal angles. The Schläfli symbol is {4,5}.

देखें[संपादित करें]

बाहरी कडि़याँ[संपादित करें]