द्विपद प्रमेय

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज

गणित में द्विपद प्रमेय एक महत्वपूर्ण बीजगणितीय सूत्र है जो x + y प्रकार के द्विपद के किसी धन पूर्णांक घातांक का मान x एवं y के nवें घात के बहुपद के रूप में प्रदान करता है। अपने सामान्यीकृत (जनरलाइज्ड) रूप में द्विपद प्रमेय की गणना गणित के १०० महानतम प्रमेयों में होती है।

न्यूटन का द्विपद प्रमेय[संपादित करें]

वस्तुतः द्विपद गुणांकों का मान पॉस्कल त्रिभुज के अवयवों के बराबर ही होता है।

अपने सरलतम रूप में द्विपद प्रमेय इस प्रकार व्यक्त किया जा सकता है:

(x+y)^n=\sum_{k=0}^n{n \choose k}x^{n-k}y^{k}\quad\quad\quad(1)

जहाँ x और y कोई भी वास्तविक संख्या या समिश्र संख्या हैं तथा n शून्य या कोई धनात्मक पूर्णांक है। उपरोक्त समीकरण (१) में आने वाले द्विपद गुणांक, n के फैक्टोरिअल के रूप में व्यक्त किये जा सकते हैं।

{n \choose k}=\frac{n!}{k!\,  (n-k)!}.

उदाहरण के लिये, 2 ≤ n ≤ 5 के लिये द्विपद प्रमेय का स्वरूप इस प्रकार है:

(x + y)^2 = x^2 + 2xy + y^2\,
(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\,
(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4\,
(x + y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 +5xy^4 + y^5.\,

द्विपद प्रमेय का सामान्य रूप (generalised form)[संपादित करें]

द्विपद प्रमेय का उपयोग किसी भी द्विपद योग x+y का r-वाँ घात निकालने के लिये कर सकते हैं जहाँ x,y वास्तविक संख्याएँ हैं, y>0 और |\tfrac{x}{y}|<1:

(x+y)^r=\sum_{k=0}^\infty {r \choose k} x^k y^{r-k}

इतिहास[संपादित करें]

द्विपद प्रमेय का इतिहास अत्यंत मनोरंजक है। प्रायः ऐसा माना जाता है कि द्विपद गुणांको को त्रिभुज के रूप में विन्यस्त करने का काम सबसे पहले पॉस्कल ने किया था। किन्तु तीसरी शताब्दी के भारतीय गणितज्ञ पिंगल ने द्विपद गुणांको का उपयोग छन्दशास्त्र में बड़ी सुन्दरता से किया है। उन्होने इसे मेरु प्रस्तार नाम दिया था।

जैसा ऊपर कहा गया है, धन पूर्णसंख्यात्मक घात के लिये द्विपद प्रमेय न्यूटन से पहले भी ज्ञात था, किंतु ऋण और भिन्नात्मक घातों के लिए न्यूटन ने इसकी खोज सन् १६६५ में की और इसकी व्याख्या रॉयल सोसायटी ऑव लंदन के सेक्रेटरी को लिखे १६७६ ई. के दो पत्रों में की। कुछ व्यक्तियों की धारणा है कि यह सूत्र न्यूटन की कब्र पर खुदा है, किंतु यह असत्य है। इस प्रमेय की दृढ़ उपपत्ति आबेल ने १८२६ ई. में दी और उन दशाओं में भी इसकी स्थापना की जब घात और द्विपद के पद सम्मिश्र (कम्प्लेक्स) होते हैं।

सन्दर्भ[संपादित करें]

  • Amulya Kumar Bag. Binomial Theorem in Ancient India. Indian J.History Sci.,1:68-74,1966.

बाहरी कड़ियाँ[संपादित करें]