आयलर समीकरण

मुक्त ज्ञानकोश विकिपीडिया से
यहाँ जाएँ: भ्रमण, खोज
चिरसम्मत यांत्रिकी
\mathbf{F} = m \mathbf{a}
न्यूटन का गति का द्वितीय नियम
इतिहास · समयरेखा
इस संदूक को: देखें  संवाद  संपादन

चिरसम्मत यांत्रिकी में, आयलर समीकरण घूर्णी निर्देश तन्त्र की सहायता से दृढ़ पिण्ड की घूर्णन गति को वर्णन करती हैं जहाँ इसकी अक्ष पिण्ड पर स्थिर तथा मुख्य जड़त्व आघूर्ण अक्ष के समान्तर हो। कार्तिय निर्देश तन्त्र में घटक निम्न प्रकार हैं:


\begin{align}
I_1\dot{\omega}_{1}+(I_3-I_2)\omega_2\omega_3 &= M_{1}\\
I_2\dot{\omega}_{2}+(I_1-I_3)\omega_3\omega_1 &= M_{2}\\
I_3\dot{\omega}_{3}+(I_2-I_1)\omega_1\omega_2 &= M_{3}
\end{align}

जहाँ Mk आरोपित बलाघूर्ण M के घटक हैं, Ik मुख्य जड़त्व आघूर्ण अक्ष I के घटक हैं और ωk कोणीय वेग ω के घटक मुख्य अक्षों की दिशा हैं।

अभिप्रेरण और व्युत्पत्ति[संपादित करें]

आयलर के द्वितीय नियम से आरम्भ करने पर, एक जड़त्वीय निर्देश तन्त्र ("in" अधोलिखित) में, कोणीय संवेग L का समय के सापेक्ष अवकलन आरोपित बलाघूर्ण के बराबर होता है


\frac{d\mathbf{L}_{\text{in}}}{dt} \ \stackrel{\mathrm{def}}{=}\  \frac{d}{dt} \left(\mathbf{I}_{\text{in}} \cdot \boldsymbol\omega \right) = \mathbf{M}_{\text{in}}

जहाँ Iin जड़त्वीय निर्देश तन्त्र में परिकलित जड़त्वाघूर्ण प्रदिश है। यद्यपि यह नियम सार्वभौमिक सत्य है, यह समान्य घूर्णी दृढ़ पिण्ड की गति के लिए हल करने में हमेशा सहायक नहीं है। चूँकि Iin और ω दोनों गति के दौरान परिवर्तित हो सकते हैं।

अतः हम निर्देश तन्त्र को इस तरह परिवर्तित करते हैं कि वह घूर्णी पिण्ड के साथ स्थिर रहे और इस तरह से चयन करते हैं कि इसकी अक्ष जड़त्वाघूर्ण प्रदिश की दिशा में स्थित हों। इस निर्देश तन्त्र में कम से कम जड़त्वाघूर्ण प्रदिश तो नियत (और विकर्ण) है, जो गणना को सुगम बनाता है। जैसा की जड़त्वाघूर्ण में समझाया गया है, कोणीय संवेग


\mathbf{L} \ \stackrel{\mathrm{def}}{=}\  
L_{1}\mathbf{e}_{1} + L_{2}\mathbf{e}_{2} + L_{3}\mathbf{e}_{3} = 
I_{1}\omega_{1}\mathbf{e}_{1} + I_{2}\omega_{2}\mathbf{e}_{2} + I_{3}\omega_{3}\mathbf{e}_{3}

जहाँ Mk, Ik और ωk उपर वर्णित किए गये अनुसार हैं।

घूर्णी निर्देश तन्त्र में, समय अवकलज को


\left(\frac{d\mathbf{L}}{dt}\right)_\mathrm{rot}+
\boldsymbol\omega\times\mathbf{L}=\mathbf{M}

से प्रतिस्थापित करना चाहिये।

जहाँ अधोलिखित "rot" घूर्णी निर्देश तन्त्र को निरुपित कर रहा है। जड़त्वीय और घूर्णी निर्देश तन्त्रों में बलाघूर्ण से सम्बंधित व्यंजक निम्न है :


\mathbf{M}_{\text{in}} = \mathbf{Q}\mathbf{M},

जहाँ Q घूर्णी प्रदिश है, जो किसी कोणीय वेग सदिश v से सम्बंधित लंब कोणीय प्रदिश है

\boldsymbol\omega \times \boldsymbol{v} = \dot{\mathbf{Q}} \mathbf{Q}^{-1}\boldsymbol{v}


बलाघूर्ण स्वतंत्र हल[संपादित करें]

व्यापकीकरण[संपादित करें]

ये भी देखें[संपादित करें]

सन्दर्भ[संपादित करें]

  • C. A. Truesdell, III (1991) A First Course in Rational Continuum Mechanics. Vol. 1: General Concepts, 2nd ed., Academic Press. ISBN 0-12-701300-8. Sects. I.8-10.
  • C. A. Truesdell, III and R. A. Toupin (1960) The Classical Field Theories, in S. Flügge (ed.) Encyclopedia of Physics. Vol. III/1: Principles of Classical Mechanics and Field Theory, Springer-Verlag. Sects. 166-168, 196-197, and 294.
  • Landau L.D. and Lifshitz E.M. (1976) Mechanics, 3rd. ed., Pergamon Press. ISBN 0-08-021022-8 (hardcover) and ISBN 0-08-029141-4 (softcover).
  • Goldstein H. (1980) Classical Mechanics, 2nd ed., Addison-Wesley. ISBN 0-201-02918-9
  • Symon KR. (1971) Mechanics, 3rd. ed., Addison-Wesley. ISBN 0-201-07392-7